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Chapter 1

Introduction

Optimization problems are everywhere: from creating high school timetables to
designing computer chips. Nowadays, optimization algorithms are widely used
in industry to increase the efficiency of a broad range of processes. Solving such
applied optimization problems using mathematics is part of the field of operations
research. This field arose in the early twentieth century. An important development
was the idea to formulate problems as integer linear programs (IPs) and mixed integer
programs (MIPs). This made it possible to solve many problems using a single type
of solver, called a MIP solver.

Various MIP solvers are available, both commercial and academic, and they
are widely used in industry. Examples include CPLEX, GUROBI, HiGHS, SCIP and
XPRESS. All of these solvers at their core use the same algorithm: the branch-
and-bound algorithm. Despite the popularity of this algorithm, the theoretical
understanding of its behavior is still limited. In this thesis, we aim to provide
a better understanding of the branch-and-bound algorithm, through both theoretical
and experimental analysis.

In the rest of this introduction, we will introduce integer linear programming
and the branch-and-bound algorithm. Let us first start by giving a brief overview of
the contents of this thesis. Our analysis of the branch-and-bound algorithm consists
of three parts:

• In Chapter 3 we do a theoretical study of the behavior of branch-and-bound
on problem instances that are sampled from several classes of probability
distributions. This can be seen as an average-case analysis of the performance
of the branch-and-bound algorithm. It relies on a result on the discrepancy
of random matrices, that we prove in Chapter 4. This part is based on joint
work with Daniel Dadush, Sophie Huiberts and Samarth Tiwari [BDHT22]
and joint work with Daniel Dadush and Dan Mikulincer [BDM23].

• In Chapter 5 we give a theoretical analysis of node selection rules, which
determine the order in which the search space is explored. We provide a new
node selection rule that has an improved running time in the explorable heap
model. This part is based on joint work with Daniel Dadush, Sophie Huiberts
and Danish Kashaev [BDHK23].
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2 1. Introduction

• Chapter 7 contains an experimental analysis of the impact of implementing
propagation and conflict analysis in an MIP solver, that uses exact rational
representations of the involved numbers. This part is based on joint work with
Leon Eifler and Ambros Gleixner [BEG24].

The branch-and-bound algorithm is typically used to solve optimization problems
that are entirely known before the algorithm starts. In Chapter 6 we study a different
type of optimization problem, in which the algorithm continuously receives new
information and has to make decisions based on this information. Such problems
are known as online problems. The problem we study is online hypergraph matching.
This part is based on joint work with Danish Kashaev and Zhuan Khye Koh [BKK24].

1.1 Integer linear programming

Linear optimization is a technique that allows us to solve a wide range of problems.
In a linear optimization problem, known as a linear program (LP), one wants to find
a variable 𝑥 ∈ R𝑛 that minimizes or maximizes a linear function while satisfying a
set of linear inequalities. Such a problem can be written in the following general
form:

min
𝑥
𝑐T𝑥

𝐴𝑥 ≤ 𝑏
𝑥 ∈ R𝑛

for some given 𝑐 ∈ R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚. Here 𝐴𝑥 ≤ 𝑏 refers to componentwise
inequality, i.e. (𝐴𝑥)𝑖 ≤ 𝑏𝑖 for all 𝑖. The above problem is a minimization problem. In
other parts of this thesis we will also consider maximization problems, in which the
objective function needs to be maximized. The two types of problems are equivalent,
since a maximization problem can be turned into a minimization problem by
multiplying the objective function by−1. Similarly, instead of using smaller-or-equal
constraints, one can equivalently use greater-or-equal constraints by multiplying
the corresponding row of 𝐴 by −1.

A classic example of a linear program is that of Stigler’s diet problem, which is
considered in the following example.
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Example 1.1.1 (A diet problem). In Stigler’s diet problem, we are given a list
of foods. Nutritional information about each food is given and the cost of the
food is also known. The problem asks for the cheapest combination of the
foods that provides enough nutrients to live on [Sti45].

Tomato Potato Pasta Zucchini Pesto
Price 0.2 0.1 0.5 1.0 1.0
Protein (g) 4.0 0.0 6.0 1.0 6.0
Fat (g) 0.0 0.0 1.0 0.0 25.0
Carbohydrates (g) 4.0 25.0 36.0 3.0 6.0

Suppose that the above (made-up) info is given and that we want to find the
cheapest combination of foods that contains at least 50 grams of fat, 60 grams
of protein and 300 grams of carbohydrates, given the info in the table above.
We can formulate this as the following linear program:

min
𝑥

0.2𝑥1 + 0.1𝑥2 + 0.5𝑥3 + 1.0𝑥4 + 1.0𝑥5⎛⎝4.0 0.0 6.0 1.0 1.0
0.0 0.0 1.0 0.0 25.0
4.0 25.0 36.0 3.0 6.0

⎞⎠𝑥 ≥

⎛⎝ 50
60
300

⎞⎠
𝑥 ≥ 0

𝑥 ∈ R𝑛

By solving this linear program, we find that the optimal solution is
(12, 9.6, 0, 0, 2.0). That is, the optimal solution is to buy 12 tomatoes, 9.6
potatoes and 2 jars of pesto. This will have a cost of 5.36.

The study of linear programs began in the 1940s, in part motivated by planning
problems in the military that arose during the second world war [Sch11; Dan91].
In 1947 Dantzig invented the simplex algorithm for solving linear programs. This
algorithm works by walking along edges of the polyhedron {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}
in a direction that improves the objective value. In 1979 Khachiyan proposed the
ellipsoid algorithm, which solves linear programs in polynomial time [Kha79]. This
was a major theoretical breakthrough, as the simplex algorithm is known to have
exponential worst-case running time. However, even today the simplex algorithm is
still widely used because of its simplicity and the fact that it often performs better in
practice than other known algorithms.
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Despite the usefulness of linear programming, many real-world problem cannot
directly be modeled as an LP. One obstacle is the fact that linear programs do not
allow for the modeling of discrete decisions. For instance, consider Example 1.1.1.
According to the optimal solution, we should buy 9.6 potatoes, but in practice we
might only be able to buy entire potatoes. To account for this restriction, we can
impose the additional constraint that a solution must consist of only integers. This
turns our linear program into an integer linear program (IP). IPs can be stated in the
following general form.

min
𝑥
𝑐T𝑥

𝐴𝑥 ≤ 𝑏
𝑥 ∈ Z𝑛

It is also common to have problems with both integer variables and continuous
variables. Such problems are called mixed integer programs (MIPs). Mixed integer
programs are able to capture a wide range of combinatorial problems, arising from
both theory and practice.

Integer programming has been shown to belong to the class of NP-complete
problems, a class of notoriously hard problems, even when restricting to only {0, 1}-
variables [Kar72]. Hence, it is unlikely that it admits a polynomial time algorithm.
By a classical result due to Lenstra [Len83] and Kannan [Kan87] ILPs with 𝑛 variables
are solvable in 𝑛𝑂(𝑛) times a polynomial factor in the bit complexity of the problem.
This was improved upon by Dadush [Dad12] and later by Reis and Rothvoss, who
improved the running time to (log(2𝑛))𝑂(𝑛) [RR23].

1.2 The branch-and-bound algorithm

The most popular algorithm for solving ILPs is the branch-and-bound algorithm,
which was introduced in 1960 by Land and Doig [LD60] and further developed by
Dakin [Dak65]. The algorithm can be seen as a divide-and-conquer algorithm that
recursively splits up the feasible region of the problem into smaller regions, and
creates subproblems for optimizing over these regions. The algorithm starts with just
one subproblem, which is the original problem. During its execution, the algorithm
maintains an upper bound on the optimal value of the original problem, coming
from the best integral solution found so far. The algorithm repeatedly executes the
following steps.

1. Pick an unprocessed subproblem.
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2. Find an optimal solution 𝑥 to the LP relaxation of this problem, which is
obtained by dropping the integrality constraints from the problem.

(a) If the LP relaxation is infeasible, conclude that the subproblem is in-
feasible.

(b) If the value of the LP relaxation is not smaller than the best integral
solution found so far (the global upper bound), prune this branch of the
search tree.

(c) If 𝑥 satisfies all integrality constraints, the solution is optimal for this
subproblem, and the subproblem has been solved. If its objective value
is smaller than the global upper bound, update the upper bound.

3. If none of the previous cases apply, split up the feasible region into two
polyhedra 𝑃1 and 𝑃2, such that their union contains all integer points in the
original polytope, but neither of the polyhedra contains 𝑥. This operation is
called branching.

4. Add the subproblems corresponding to these polyhedra to the list of unsolved
subproblems (that is min{𝑐T𝑥 : 𝑥 ∈ 𝑃2 ∩ Z𝑛} and min{𝑐T𝑥 : 𝑥 ∈ 𝑃1 ∩ Z𝑛}).
Wait till these are solved. If both subproblems are infeasible, conclude that
the problem is infeasible. Otherwise, the optimal solution to the current
subproblem is the best of the optimal solutions to the two subproblems.

Note that when branching on a subproblem, the LP value of this problem provides
a lower bound on the optimal value of the newly created subproblems. Hence, we
have a lower bound for each unprocessed subproblem. The minimum of these will
be a lower bound on the value of any unfound solution. As soon as this lower bound
hits the upper bound, an optimal solution has been found and the algorithm finishes.

Note that in step 3, it is not specified how to split up the feasible polyhedron.
This is the responsibility of the branching rule, which is a crucial component of the
algorithm. A common way is to take a variable 𝑥𝑖 that is not integral in 𝑥, and
to create two polytopes by adding the constraints 𝑥𝑖 ≤ ⌊𝑥𝑖⌋ and 𝑥𝑖 ≥ ⌈𝑥𝑖⌉ to the
two subproblems. This is called branching on variables. Another way is to branch
using general disjunctions by adding respectively 𝑎T𝑥 ≤ 𝛿 and 𝑎T𝑥 ≥ 𝛿+1 for some
𝑎 ∈ Z𝑛 and some 𝛿 ∈ Z. However, other ways of branching are possible as well.
Substantial research has been done on branching rules, see, e.g., [LS99; AKM05;
LZ17; BDSV18]. Another important component of the algorithm is the node selection
rule, which decides which subproblem to solve next. We will elaborate on this in
Section 1.5.

The search tree, in which the nodes represent subproblems and the edges
represent the branching operation, is known as the branch-and-bound tree. In this
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tree, the root node represents the original problem, and for each node, the children
represent the subproblems created by branching. What makes the algorithm more
efficient than a naive enumeration of all possible solutions is that it uses the LP
relaxation to prune branches in three ways.

• If the LP relaxation is infeasible, the subproblem is pruned by infeasibility.

• If the LP relaxation is greater than the best integral solution found so far, the
subproblem is pruned by bound.

• If the LP relaxation has an integral optimal solution, the subproblem is pruned
by optimality.

An illustration of a possible branch-and-bound tree is given in Fig. 1.1.

0

4 5

8.5 4 6 ∞

5 9

x1 ≤ 2 x1 ≥ 3

x3 ≤ 6 x3 ≥ 7 x2 ≤ 0 x2 ≥ 1

x2 ≤ 1 x2 ≥ 2

min 𝑥4⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 −1/5
−2 0 0 −1/4
4 2 0 0
0 −2 0 −1/6

−16 0 −2 −2/17
−40 −2 40 −1/5
−40 2 40 −1/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥 ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

5
−5
27/2
−1
−45
197
203

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥 ≥ 0

𝑥 ∈ Z4

Figure 1.1: An example of an integer program and its corresponding branch-
and-bound tree. The node labels represent the value of the LP relaxation of the
corresponding subproblem. Observe that they are always non-decreasing along
paths down the tree. The edge labels represent the branching decisions. The green
subproblems admit integral optimal solutions, the red subproblem is infeasible and
the blue subproblem is pruned by bound.
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Now consider the running time of the algorithm. At each processed node of
the branch-and-bound tree, an LP is solved. As discussed earlier, LPs can be solved
efficiently. However, the number of nodes in the branch-and-bound tree can be
exponential in the size of the problem, leading to an exponential worst-case running
time. Hence, the number of nodes in the branch-and-bound tree is an important
measure of the performance of the algorithm.

Solvers that use the branch-and-bound algorithm typically rely on additional
techniques to speed up the solving process. These include cutting planes, which are
derived inequalities that are added to the LP relaxation to make it tighter, primal
heuristics, that allow the solver to quickly find good integral solutions [Ach07b],
and symmetry reduction, which reduces the size of the search space by exploiting
symmetries [Lib12; Ost09]. Other techniques are constraint propagation, which can
tighten variable bounds without solving an LP and conflict analysis, which allows
the solver to learn from infeasible subproblems [Ach07b]. In Chapter 7 we will
elaborate on the latter two techniques. For more background on the branch-and-
bound algorithm we refer to [Wol21; NW88; Ach07b; CCZ14].

1.3 Branch-and-bound beyond the worst case

As IP is an NP-complete problem, we should not expect the branch-and-bound
algorithm to run in polynomial time. Indeed, there exist instances for which any
branch-and-bound tree will be of exponential size, when only branching on variables
is allowed, leading to an exponential solving time (see Example 1.3.1). Even when
branching on general disjunctions is allowed, there are instances that need a 2𝐿Ω(1)

size tree, where 𝐿 is the encoding length of the problem [GP24]. This shows
that the worst-case time complexity of the branch-and-bound algorithm is indeed
superpolynomial.

Example 1.3.1. Consider the following IP for some odd 𝑛 ∈ N:

max
𝑛∑︁

𝑖=1

𝑥𝑖

𝑛∑︁
𝑖=1

𝑥𝑖 ≤
𝑛

2

𝑥𝑖 ∈ {0, 1}

It is clear that the optimal solution has objective value ⌊𝑛/2⌋, while the LP
relaxation has value 𝑛/2. Any branch-and-bound tree for this problem that
only branches on variables will have size at least 2𝑛/2, which is exponential
in 𝑛.
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However, there exist many classes of IPs that are solvable in polynomial time. For
instance, IPs for which the feasible region is an integral polytope can simply be solved
by solving the LP relaxation. Most real-world IPs do not necessarily belong to these
classes. Yet, many of them can still be solved using the branch-and-bound algorithm
in a reasonable amount of time. This suggests that the worst-case time complexity
of the algorithm is not always a good measure of its performance. Instead, we could
look at the average-case time complexity, by analyzing the time that the algorithm
needs to solve a problem instance sampled from a given probability distribution. The
study of this quantity is called average-case analysis.

A wide range of algorithms has been studied using average-case analysis. A
notable example is the aforementioned simplex algorithm for solving LPs, which
was shown to run in polynomial time on large classes of LPs [Bor82]. For that
algorithm, polynomial time complexity was also shown in the stronger smoothed
analysis model in which one considers adversarially chosen instances with a small
amount of random noise added to the instance data [ST04; HLZ23].

The average-case complexity of integer linear programming has been studied in
several settings [Kuz96; BV04a; EW19; JR23; Pap81; DF89; DF92]. A strong result
in the context of smoothed analysis is that, under mild conditions, the class of IPs
whose smoothed complexity is polynomial corresponds exactly to the class of IPs
solvable in pseudopolynomial time [RV07; BV04b].

In each of these results, problems are shown to have polynomial time complexity
by showing that they can be efficiently solved using specially constructed algorithms.
However, these algorithms are seldom used in practice. Real-world problems are typ-
ically solved using the generic branch-and-bound algorithm, which is very effective
in practice. This suggests that this algorithm is efficient on large classes of problems
and that using specialized algorithms is not necessary. It therefore motivates the
study of the average-case complexity of the branch-and-bound algorithm itself.

For the branch-and-bound algorithm, little had been known about its average-
case time complexity before the publication of recent work by Dey, Dubey and
Molinaro [DDM23]. They studied the average-case complexity of the branch-and-
bound algorithm on binary packing IPs for which the coefficients of the cost vector
and the constraint matrix are sampled independently from a uniform distribution.
When the number of constraints is constant, they show that the average-case time
complexity of the algorithm is only polynomial in the number of variables. In this
thesis we extend their results to a wide range of probability distributions.

An important step in the analysis in [DDM23] is relating the size of the branch-
and-bound tree to the number of integer points in a specific knapsack polytope,
whose capacity is equal to integrality gap of the LP relaxation of the IP. This
integrality gap, which we denote by IPGAP, is the difference in objective value
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between the optimal value of the LP relaxation and the optimal integral solution.
They then bound the size of this knapsack. In Chapter 3 we give a refined version of
this argument, whichworks for general distributions of IPs with cost coefficients from
continuous distributions of bounded density. This shows that with high probability
the tree size is at most 𝑒𝑂(

√
𝑛·IPGAP) for fixed𝑚.

By providing a high probability bound on the integrality gap for several classes
of IPs, we show that for these IPs the branch-and-bound tree is of polynomial size
with high probability. Our first result applies to the following two classes of IPs:

• IPs with entries of 𝑐 that are all independent Gaussian 𝒩 (0, 1) distributed,
and columns of 𝐴 that are independently sampled from a logconcave isotropic
distribution.

• IPs for which 𝑏 is integral with entries of 𝑐 that are all independent Gaussian
𝒩 (0, 1) distributed, and entries of 𝐴 that are independently sampled from a
uniform distribution on {−𝑘, . . . , 𝑘} for 𝑘 ≥ 1.

We will refer to these as Centered IPs. Note that IPs from the second class have
discretely distributed coefficients. This makes them especially interesting to study,
as many real-world IPs are of a combinatorial nature and have discrete coefficients.

In Chapter 3 we prove that the average-case time complexity of branch-and-
bound on these classes of IPs is only polynomial in the number of variables. Here
we state a simplified version of the result.

TheoremA (Theorem 3.1.5). For randomly sampled IPs from a probability distribution
of Centered IPs for which

∑︀𝑛
𝑖=1 max(−𝑏𝑖, 0)2 ≤ 𝑂(𝑛2), with probability 1− 1/𝑛 any

branch-and-bound tree has size at most 𝑛poly(𝑚).

The third class of IPs that we consider is the class of IPs where the entries 𝑐 come
from an exponential distribution and the entries of 𝐴 are uniformly sampled from
{1, . . . , 𝑘}. We will refer to these as Discrete Packing IPs. For these IPs we prove
the following result. Note that in this setting, we require stronger conditions on the
right-hand side 𝑏.

Theorem B (Theorem 3.1.5). For randomly sampled IPs from a probability distribution
of Discrete Packing IPs where 𝑏 ∈ ((𝑘𝑛𝛽, 𝑘𝑛(1/2 − 𝛽)) ∩ Z)𝑚 for some 𝛽 ∈ (0, 14),
with probability 1− 1/𝑛 any branch-and-bound tree has size at most 𝑛exp(1/𝛽) poly(𝑚).
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1.4 Integrality gaps and the discrepancy of random matrices

A key ingredient for proving Theorems A and B is to derive high probability bounds
on the integrality gap for Centered IPs and Discrete Packing IPs. Integrality gaps
for random IPs have been studied for the 0-1 knapsack problem [Lue82], for the
multidimensional knapsack problem [DF89], and for the generalized assignment
problem [DF92]. In each of these cases, the distribution of the coefficients of the
IPs was assumed to be uniform, and an integrality gap of 𝑂(log(𝑛)2/𝑛) was shown
with high probability.

To prove gap bounds for Centered IPs and Discrete Packing IPs, we build on
the approach of Dyer and Frieze from [DF89], in which they show that with high
probability, a solution to the LP relaxation can be rounded to an integral solution at
small cost to the objective value.

To adapt this approach to Centered IPs and Discrete Packing IPs there are some
changes that need to be made.An important step in the work of Dyer and Frieze is
to show that with high probability there exists a subset of columns of the constraint
matrix 𝐴, whose sum is very close to some carefully constructed vector 𝑡. They
prove this using the second moment method. In [BDHT22] we have shown that this
method can be used to generalize the argument to the setting of Centered IPs with
Gaussian entries in the constraint matrix. However, the same method cannot easily
be applied for Centered IPs from discrete distributions, or even natural extensions
like logconcave distributions.

Instead, we devote Chapter 4 to a different approach which uses Fourier analysis
for proving such bounds. We will show that with high probability over 𝐴, for every
suitable vector 𝑡 there is a subset 𝑇 ⊆ [𝑛] such that ‖

∑︀
𝑖∈𝑇 𝐴𝑖 − 𝑡‖ is small. For the

discrete distributions that we consider, this amounts to showing the high probability
existence of a subset 𝑇 such that

∑︀
𝑖∈𝑇 𝐴𝑖 = 𝑡.

We note that our result is closely related to the concept of linear discrepancy,
introduced by Lovász, Spencer and Vesztergombi [LSV86]. The linear discrepancy of
a matrix 𝐴 ∈ R𝑚×𝑛 is defined to be lindisc(𝐴) := max𝜆∈[0,1]𝑛 min𝑥∈{0,1}𝑛 ‖𝐴(𝑥−
𝜆)‖∞. It can be seen as the “rounding error” one must incur to round a [0, 1]
combination of the columns to a {0, 1} combination. There is a rich history of work
on various notions of discrepancy [Cha01; CST14]. This theory has found many
applications in algorithm design and complexity theory [BRS22; HR17].

Our result for the existence of a suitable set𝑇 ,Theorem 4.3.4, can be interpreted as
bounding the linear discrepancy of the random matrix 𝐴 for combinations 𝜆 ∈ [0, 1]
which are very close to 𝑝1𝑛, where 𝑝 ∈ (0, 1) for appropriate 𝑝. We now state a
simplified version of our results. For logconcave isotropic distributions, we have the
following result.



1.5. Node selection rules 11

Theorem C (Theorem 4.3.5). Suppose the columns of 𝐴 ∈ R𝑚×𝑛 are independently
sampled from a logconcave isotropic distribution with mean 𝜇 ∈ R𝑚. Let 𝑝 ∈ [0, 1]

with poly(𝑚) log(𝑛)
𝑛 ≤ 𝑝 ≤ 1

poly(𝑚) .

Then, with probability 1−𝑒−Ω(𝑝𝑛) for every 𝑡with ‖𝑡−𝑝𝑛𝜇‖ ≤ 𝑂
(︁ √

𝑝𝑛
log(𝑚)𝑚

)︁
there

exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that ‖𝐴1𝑆 − 𝑡‖ ≤ exp
(︀
−Ω(𝑝𝑛𝑚 )

)︀
.

For the discrete distributions that we consider, we prove the following theorem.

TheoremD (Theorem 4.3.7). Suppose the entries of𝐴 ∈ R𝑚×𝑛 are uniformly sampled
from {0, 1, . . . , 𝑘}. Let 𝑝 ∈ [0, 1] with poly(𝑚) log(𝑛) log(𝑘)

𝑛 ≤ 𝑝 ≤ 1
poly(𝑚) .

Then, with probability 1 − 𝑒−Ω(𝑝𝑛) for every 𝑡 ∈ Z𝑛 with ‖𝑡 − 𝑝𝑛𝑘/2‖ ≤
𝑂
(︁
𝑘

√
𝑝𝑛

log(𝑚)𝑚

)︁
there exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that 𝐴1𝑆 = 𝑡.

1.5 Node selection rules

In our description of the algorithm we did not specify how the algorithm decides
which subproblem to pick in step 1. This is the responsibility of the node selection
rule. It is an important component of the algorithm, as it determines the order in
which the search space is explored.

One way to do node selection is to always select the unprocessed subproblem
whose parent has the smallest LP value. This is known as the best-first rule. This
rule is theoretically optimal, because it minimizes the number of nodes that need to
be processed.

However, a disadvantage of this rule is that consecutively processed subproblems
can be far apart in the search tree. For practical reasons this is often less efficient. A
simple depth-first search strategy does not suffer from this problem, but this can
lead to an unnecessarily large branch-and-bound tree. In practice, often a hybrid
strategy is used. While these strategies perform well in practice, they do not come
with good theoretical guarantees.

We study the node selection problem from a theoretical perspective in Chapter 5.
We do so by studying the closely related problem of explorable heap selection.
This problem consists of locating the 𝑛th smallest value in a min-heap. The values
of the heap can only be accessed by the algorithm by moving the ‘cursor’ to the
corresponding node. The running time of the algorithm is measured by the number
of edges in the search tree that it traverses. We will show that this model captures
the essence of the node selection problem.

The model was originally introduced by Karp, Saks and Wigderson [KSW86] to
design node selection rules with low space complexity. The randomized algorithm
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that they introduce has an expected running time of 𝑛 · 𝑒𝑂(
√︀

log(𝑛)) and space
complexity 𝑂(

√︀
log𝑛). For comparison, the best-first strategy has a running time

of 𝑂(𝑛2) and space complexity 𝑂(1).
In Chapter 5 we improve on the running time by giving a randomized algorithm

with running time 𝑂(𝑛 log(𝑛)3) and space complexity 𝑂(log𝑛).

Theorem E (Theorem 5.3.1). There exists a randomized algorithm that solves the
explorable heap selection problem, with expected running time 𝑂(𝑛 log(𝑛)3) and
𝑂(log(𝑛)) space.

Note that the running time of our algorithm is significantly better than the
algorithm from [KSW86], while the space complexity is slightly worse. This suggests
that there is a trade-off between running time and space complexity of algorithms
for this problem. Indeed, we provide the following lower bound on the running time
of space-efficient algorithms.

Theorem F (Theorem 5.4.4). Any randomized algorithm for explorable heap selection
with space complexity 𝑠 has a running time complexity of Ω(log𝑠+1(𝑛)𝑛).

1.6 Online hypergraph matching

In the integer linear programming problem, both the objective function and the
constraints are known in advance. Such a problem is known as an offline problem.
Many optimization problems arising in practice are online problems, for which not
all information is known in advance. An example is scheduling deliveries for a food
delivery company. The company receives orders throughout the day and needs to
decide which driver is going to deliver which orders. The orders are not known up
front, so that scheduling decisions need to be made using incomplete information.
The aforementioned explorable heap selection problem can also be seen as an online
problem, as new information is revealed as the algorithm progresses.

A well-known online problem is online bipartite matching, which has applications
in online advertising. In this problem, a bipartite graph is given. The goal is to find a
matching, a set of disjoint edges, of maximum size. Then, the vertices of one side of
the graph are revealed one by one, along with their incident edges. After the arrival
of each vertex, it needs to be decided whether to match it to one of its neighbors or
not. Added edges cannot be removed from the matching afterwards.

The online bipartite matching problem has been studied using competitive
analysis, which compares the objective value that an online algorithm achieves to
the optimal offline solution. In seminal work, Karp, Vazirani and Vazirani [KVV90]
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showed that there exists a randomized algorithm that achieves a competitive ratio
of 1− 1

𝑒 .
In Chapter 6 we study a natural generalization of this problem, where instead

of a bipartite graph, a 𝑘-uniform hypergraph is given. A 𝑘-uniform hypergraph,
has edges that consist of 𝑘 vertices. While the problem has been studied in the
random-order setting [MSV23; KTRV14], there are still many open questions about
the adversarial-order setting, in which the order of the vertices is chosen by an
adversary. In particular, no algorithm better than the trivial 1/𝑘-competitive greedy
algorithm is known. We study the fractional version of the problem for the case
𝑘 = 3. For this case, we provide an (𝑒 − 1)/(𝑒 + 1) competitive algorithm. Our
main contribution is a matching upper bound, which shows that every algorithm is
at most (𝑒− 1)/(𝑒+ 1)-competitive.

Theorem G (Theorem 6.1.1). For the online fractional matching problem on 3-
uniform hypergraphs, there is a deterministic (𝑒− 1)/(𝑒+ 1)-competitive algorithm.
Furthermore, every algorithm is at most (𝑒− 1)/(𝑒+ 1)-competitive.

We also provide an algorithm for the integral version of the problem for general
𝑘, that achieves a better competitive ratio than the greedy algorithm on graphs with
bounded degree.

Theorem H (Theorem 6.1.2). For the online matching problem on 𝑘-uniform hyper-
graphs where online vertices have maximum degree 𝑑, there exists an algorithm whose
competitive ratio is

min
(︂

1

𝑘 − 1
,

𝑑

(𝑑− 1)𝑘 + 1

)︂
.

1.7 Solving rational MIPs exactly

In the last chapter of this thesis, we study the branch-and-bound algorithm ex-
perimentally. One of the many use cases of MIP solvers is proving results in
computational mathematics. There have been recent examples in logic [BMVV19],
topology [BO12], (extremal) combinatorics [EGP22; KS18; Pul20] and graph theory
[LPR20]. In these applications, it can be important to be certain that the found
solution is indeed optimal, as even a small numerical error could invalidate the result.
In some other applications numerical errors can also have severe consequences, such
as in chip design [Ach07b], where they can lead to malfunctioning chips.

There are no theoretical barriers to implementing the branch-and-bound algo-
rithm exactly. It is a well known fact that MIPs with only rational coefficients have an
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optimal solution that is also rational [Sch03; Sch11, Theorem 16.1]. So by storing all
numbers in the branch-and-bound algorithm and its LP solves as rational numbers,
one can solve MIPs exactly. However, in practice, most MIP solvers use floating point
arithmetic, as this greatly reduces the running time, especially for the LP solves.
This can lead to numerical errors, which can cause the algorithm to return slightly
suboptimal or even incorrect solutions. For the applications mentioned above that
can be problematic.

To avoid numerical errors for such problems, one can solve all the LPs using
rational arithmetic. However, this is prohibitively slow. To circumvent this issue,
a hybrid approach has been proposed recently, which uses both floating-point and
rational arithmetic [CKSW13]. This approach has been revised and was further
improved by [EG22]. Here all LPs are initially solved using floating point arithmetic
in a safe way that guarantees that feasible solutions are not lost. Only when the
outcome of a floating point solve is inconclusive, the LP is solved using rational
arithmetic. This approach has been implemented in the academic MIP solver SCIP,
and was shown to be highly effective in practice [EG22]. Still, the approach is
significantly slower than the floating point version of SCIP.

Themain reason for this is that our previous description of the branch-and-bound
algorithm is not all that a MIP solver does. In practice, MIP solvers use additional
techniques to speed up the solving process. Two important techniques are constraint
propagation and conflict analysis. These techniques were not implemented in the
exact version of SCIP. In Chapter 7 we implement them and analyze the impact on
the performance of the solver. In experiments on a wide range of MIPs, we show
that this leads to a significant speedup.

Result I. By implementing constraint propagation and conflict analysis in the exact
MIP solver SCIP, we decrease the running time by 23% and 11% more instances are
solved to optimality on a subset of the MIPLIB 2017 benchmark set within the time limit
of two hours.

1.8 Organization

In Chapter 2 we introduce notation that is used throughout the thesis and state some
basic results that we need. In Chapter 3 we provide bounds on the integrality gap
of IPs with random coefficients, and use these bounds to provide an average-case
analysis of the branch-and-bound algorithm. In Chapter 4 we prove a result on the
discrepancy of random matrices, which is used in the analysis of the integrality gap
in Chapter 3. In Chapter 5 we study the node selection problem in the explorable
heap model. In Chapter 6 we study the online hypergraph matching problem. In
Chapter 7 we study the impact of implementing propagation and conflict analysis in
an exact MIP solver.



Chapter 2

Preliminaries

In this chapter, notation and definitions are introduced that will be used throughout
the thesis. Furthermore, some well-known results are stated.

2.1 Basic notation

We denote the reals and non-negative reals by R,R+ respectively, and the integers
and positive integers by Z,N respectively. For 𝑘 ≥ 1 an integer, we let [𝑘] :=
{1, . . . , 𝑘}. If (𝑥1, . . . , 𝑥𝑚) ∈ R𝑚 and 𝑝 ≥ 1, the 𝑝-norm is defined by,

‖𝑥‖𝑝 :=

(︃
𝑚∑︁
𝑖=1

|𝑥𝑖|𝑝
)︃ 1

𝑝

.

When 𝑝 = 2, i.e. the Euclidean norm, we will sometimes omit the subscript, so
‖𝑥‖ := ‖𝑥‖2. We interpret 𝑝 =∞ in the limiting sense:

‖𝑥‖∞ := max
1≤𝑖≤𝑛

|𝑥𝑖|.

For a matrix 𝐴, we use ‖𝐴‖op to denote the operator norm.
For 𝑠 ∈ R, we let 𝑠+ := max{𝑠, 0} and 𝑠− := min{𝑠, 0} denote the positive and

negative part of 𝑠. We extend this to a vector 𝑥 ∈ R𝑛 by letting 𝑥+(−) correspond
to applying the positive (negative) part operator coordinate-wise.

We use log𝑥 to denote the base 2 logarithm and ln𝑥 to denote the base 𝑒
natural logarithm. We use 0𝑚, 1𝑚 ∈ R𝑚 to denote the all zeros and all ones
vector respectively, and 𝑒1, . . . , 𝑒𝑚 ∈ R𝑚 denote the standard coordinate basis.
The identity matrix in R𝑚 is denoted by 𝐼𝑚. We write R𝑚

+ := [0,∞)𝑚.
If 𝑎 and 𝑏 are quantities that depend on the problem’s parameters we will write

𝑎 = 𝑂(𝑏) (resp. 𝑎 = Ω(𝑏)) to mean 𝑎 ≤ 𝐶𝑏 + 𝐷, (resp. 𝑎 ≥ 𝐶𝑏 − 𝐷) for some
numerical constants 𝐶,𝐷 > 0. We also write 𝑎 ≪ 𝑏 or 𝑎 = 𝑜(𝑏) (resp. 𝑎 ≫ 𝑏 or
𝑎 = 𝜔(𝑏)) to mean lim

𝑎→∞
𝑎
𝑏 = 0 (resp. lim

𝑎→∞
𝑏
𝑎 = 0). We will write poly(𝑛) to refer to

some polynomial in 𝑛.

15
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For matrices 𝐴,𝐵 ∈ R𝑛×𝑛 we will write 𝐴 ⪰ 𝐵 to mean that 𝐴−𝐵 is positive
semidefinite. Let 𝐼𝑚 denote the identity matrix of size 𝑚. When the size of the
matrix is clear from the context, we will omit the subscript and simply write 𝐼 .

2.2 Linear programming

We will often use the following standard form for a linear program:

max
𝑥
𝑐T𝑥

𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

𝑥 ∈ R𝑛.

We will call this the primal program. The dual program is now given by:

min
𝑦
𝑏T𝑥

𝐴T𝑦 ≥ 𝑐
𝑦 ≥ 0

𝑦 ∈ R𝑚.

By a classical result, the value of the primal program is equal to the value of the dual
program [Sch03, Theorem 5.4]. This is known as strong duality. Another important
result is the complementary slackness condition, which states that 𝑥 and 𝑦 are optimal
solutions to the primal and dual programs respectively if and only if for all 𝑖 ∈ [𝑛]
and 𝑗 ∈ [𝑚], we have (𝐴T𝑦− 𝑐)𝑖 ·𝑥𝑖 = 0 and (𝐴𝑥− 𝑏)𝑗 · 𝑦𝑗 = 0 [Sch03, Section 5.5].
Given an optimal dual solution 𝑦, the components of the vector 𝑐 = 𝑐−𝐴T𝑦 are called
the reduced costs. We note that 𝑐𝑖 is the rate at which the objective function increases
when increasing 𝑥𝑖 at rate one while reoptimizing to stay within the feasible region.

2.3 Stochastics

Let 𝑋 ∈ R𝑚 be a random vector distributed according to a probability measure
𝜈 on R𝑚. We will use 𝑓𝑋 to refer to the probability density function of 𝑋 . We
denote the expectation by E[𝑋] and covariance matrix by Cov[𝜈] := Cov[𝑋] :=
E[𝑋𝑋T]−E[𝑋]E[𝑋]T ⪰ 0. If𝑋 ∈ R is a real random variable, we use the notation
Var[𝑋] to write the variance instead of Cov(𝑋). For any 𝑢 ∈ R𝑑, we note that
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Var[𝑢T𝑋] = E[(𝑢T𝑋)2]− E[𝑢T𝑋]2 = 𝑢T Cov[𝑋]𝑢. We say that 𝑋 , or its law 𝜈, is
isotropic if and E[𝑋] = 0 and Cov[𝑋] = 𝐼𝑚.

𝑋 ∈ R𝑑 is a continuous random vector if it admits a probability density 𝑓 :
R𝑑 → R+ satisfying Pr[𝑋 ∈ 𝐴] =

∫︀
𝐴 𝑓(𝑥)𝑑𝑥, for all measurable 𝐴 ⊆ R𝑑. We will

say that a continuous random vector has maximum density at most 𝑀 > 0 if its
probability density 𝑓 satisfies sup𝑥∈R𝑑 𝑓(𝑥) ≤𝑀 .

Proposition 2.3.1. Let 𝑋 ∈ R𝑛 satisfy E[𝑋] = 0. Then E[𝑋+] = E[|𝑋|]/2.

Proof. Note that 0 = E[𝑋] = E[𝑋+ −𝑋−]⇒ E[𝑋+] = E[−𝑋−]. Thus, E[|𝑋|] =
E[𝑋+] + E[−𝑋−] = 2E[𝑋+], as needed.

Lemma 2.3.2. If the density function 𝑓𝑋 of 𝑋 is bounded from above by𝑀 , then:

Var(𝑋) ≥ 1

12𝑀2
.

Proof. If we want to minimize Var(𝑋) =
∫︀∞
−∞ 𝑡2𝑓𝑋(𝑡)𝑑𝑡 under the conditions

𝑓𝑋 ≤𝑀 and E[𝑋] = 0, then the the unique minimizer is 𝑓𝑥 =𝑀 · 1[− 1
2𝑀

, 1
2𝑀

]. We
then see,

Var(𝑋) =

∫︁ 1
2𝑀

− 1
2𝑀

𝑡2 ·𝑀𝑑𝑡 =

[︂
1

3
𝑀 · 𝑡3

]︂ 1
2𝑀

1
−2𝑀

=
1

12𝑀2
.

Chernoff bounds and binomial sums

Let 𝑋1, . . . , 𝑋𝑛 be independent {0, 1} random variables with 𝜇 = E[
∑︀𝑛

𝑖=1𝑋𝑖].
Then, the Chernoff bound gives [Doe11, Corollary 1.10]

Pr

[︃
𝑛∑︁

𝑖=1

𝑋𝑖 ≤ 𝜇(1− 𝜀)

]︃
≤ 𝑒−

𝜀2𝜇
2 , 𝜀 ∈ [0, 1]. (2.1)

Pr

[︃
𝑛∑︁

𝑖=1

𝑋𝑖 ≥ 𝜇(1 + 𝜀)

]︃
≤ 𝑒−

𝜀2𝜇
3 , 𝜀 ∈ [0, 1].

A more refined version is given by Azuma’s inequality which allows the random
variables to admit some mild dependencies. Let 𝑋1, . . . , 𝑋𝑛 be {0, 1} random
variables with 𝜇 =

∑︀𝑛
𝑖=1 E[𝑋𝑖|𝑋1, . . . , 𝑋𝑖−1]. Then,

Pr[
𝑛∑︁

𝑖=1

𝑋𝑖 ≥ (1 + 𝜀)𝜇] ≤ 𝑒−
𝜀2𝜇2

2𝑛 , 𝜀 ∈ [0, 1]. (2.2)
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To see this bound, apply [Doe11, Theorem 1.10.30] to the martingale 𝑆𝑖 :=
𝑖∑︀

𝑗=1
𝑋𝑗 −

E[𝑋𝑗 |𝑋1, . . . , 𝑋𝑗−1].

Gaussian and sub-Gaussian random variables

If 𝜇 ∈ R𝑚 and Σ is an𝑚×𝑚 positive-definite matrix, we denote by 𝒩 (𝜇,Σ), the
law of the Gaussian with mean 𝜇 and covariance Σ. The probability density function
of 𝒩 (𝜇,Σ) is given by 1√

2𝜋
𝑚 det(Σ)1/2

𝑒−
1
2
(𝑥−𝜇)TΣ−1(𝑥−𝜇), ∀𝑥 ∈ R𝑛.

The following is a basic concentration fact for the norm of the standard Gaussian
that we will use in Chapter 4.

Lemma 2.3.3 ([LM00, Lemma 1]). Let 𝐺 ∼ 𝒩 (0, 𝐼𝑚) and let 𝑥 ≥ 7𝑚. Then,

Pr
(︀
‖𝐺‖2 ≥ 𝑥

)︀
≤ 𝑒−

𝑥
3 .

In Chapter 3 we will use the concept of sub-Gaussian random variables. A
random variable 𝑌 ∈ R is 𝜎-sub-Gaussian if for all 𝜆 ∈ R, we have

E[𝑒𝜆𝑌 ] ≤ 𝑒𝜎2𝜆2/2. (2.3)

A standard normal random variable 𝑋 ∼ 𝒩 (0, 1) is 1-sub-Gaussian. If variables
𝑌1, . . . , 𝑌𝑘 ∈ R are independent and respectively 𝜎𝑖-sub-Gaussian, 𝑖 ∈ [𝑘], then∑︀𝑘

𝑖=1 𝑌𝑖 is
√︁∑︀𝑘

𝑖=1 𝜎
2
𝑖 -sub-Gaussian.

For a 𝜎-sub-Gaussian random variable 𝑌 ∈ R we have the following standard tail
bound [Ver18, Proposition 2.5.2]:

max{Pr[𝑌 ≤ −𝜎𝑠], Pr[𝑌 ≥ 𝜎𝑠]} ≤ 𝑒−
𝑠2

2 , 𝑠 ≥ 0. (2.4)

The following standard lemma shows that bounded random variables are sub-
Gaussian.

Lemma 2.3.4. Let 𝑋 ∈ [−1, 1] be a mean-zero random variable. Then 𝑋 is 1-sub-
Gaussian.

Proof. Let 𝜙(𝑥) := 𝑒𝜆𝑥 for 𝜆 ∈ R. By convexity of 𝜙, note that for 𝑥 ∈ [−1, 1],
𝜙(𝑥) ≤ 1−𝑥

2 𝜙(−1) + 1+𝑥
2 𝜙(1). Therefore,

E[𝜙(𝑋)] ≤ E[
1−𝑋

2
𝜙(−1) + 1 +𝑋

2
𝜙(1)] =

1

2
(𝜙(−1) + 𝜙(1)) =

1

2
(𝑒−𝜆 + 𝑒𝜆)

=
∞∑︁
𝑖=0

𝜆2𝑖

(2𝑖)!
≤

∞∑︁
𝑖=0

(𝜆2/2)𝑖

𝑖!
= 𝑒𝜆

2/2, as needed.



2.3. Stochastics 19

We also need the following fact about truncated sub-Gaussian random variables,
which is a slight generalization of [BDHT22, Lemma 7]:

Lemma 2.3.5. Let𝑋 ∈ R be 1-sub-Gaussian. Then E[𝑋+] ≤ 1/2 and𝑋+ − E[𝑋+]
is
√
2-sub-Gaussian.

Proof. Since𝑋 is 1-sub-Gaussian, note thatE[𝑋] = 0 and thatE[𝑋2] ≤ 1. Therefore,
by Proposition 2.3.1, we have 𝜇 := E[𝑋+] = E[|𝑋|]/2 ≤ E[𝑋2]1/2/2 ≤ 1/2 by
Hölder.

√
2-sub-Gaussianity of 𝑋+ − 𝜇 now follows verbatim from the proof of

[BDHT22, Lemma 5] using that 𝜇2 ≤ 1/3 and replacing Gaussian by sub-Gaussian.

Logconcave measures

If a measure 𝜈 has a density that is a logconcave function, we call 𝜈 logconcave.
Logconcave distributions have many useful analytical properties. In particular, the
marginals of logconcave random vectors are also logconcave.

Theorem 2.3.6 ([Pré71]). Let 𝑋 ∈ R𝑑 be a logconcave random vector. Then, for any
surjective linear transformation 𝑇 : R𝑑 → R𝑘, 𝑇𝑋 is a logconcave random vector.

The following gives a (essentially tight) bound on the maximum density of any
one dimensional logconcave variable in terms of the variance.

Lemma 2.3.7 ([LV07, Lemma 5.5]). Let 𝑋 ∈ R be a logconcave variable. Then its
density function is upper bounded by 1√︀

Var[𝑋]
.

The above has an important consequence. If𝑋 ∈ R𝑛 is logconcave and isotropic,
then for any vector 𝑣 ∈ R𝑛 ∖ {0}, the random variable 𝑣T𝑋 has maximum density
at most 1/

√︀
Var[𝑣T𝑋] = 1/‖𝑣‖2, where we have used 𝑣T𝑋 is logconcave.

By a result of Grünbaum, the centroid of a convex set is also an approximate
median [Grü60]. We will use the following generalization of this result to logconcave
measures.

Lemma 2.3.8 ([BV04c]). Let𝑋 ∈ R𝑛 be a logconcave measure with mean E[𝑋] = 𝜇.
Then for any 𝜃 ∈ S𝑛−1 and 𝑡 ∈ R, Pr[𝜃T𝑋 ≥ 𝜃T𝜇− 𝑡] ≥ 1/𝑒− |𝑡|.

We shall require the fact that logconcave random variables satisfy the following
comparison inequality.

Lemma 2.3.9 ([Fra99]). Let 𝑋 ∈ R+ logconcave with E[𝑋] = 𝜇 and let 𝑍 have
density 𝑒−𝑥 (exponential distribution), 𝑥 ≥ 0. Then, for any convex function 𝜙 : R+ →
R, E[𝜙(𝑋)] ≤ E[𝜙(𝜇𝑍)]. In particular,
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1. E[𝑋2] ≤ 2𝜇2.

2. E[𝑒𝜆𝑋 ] ≤ 1
1−𝜆𝜇 , 𝜆 < 1/𝜇.

Lemma 2.3.10. For 𝑋 ∈ R mean-zero and logconcave, we have E[𝑋2] ≤ 𝑒E[|𝑋|]2.

Proof. Let 𝑋𝑙 := −𝑋 | 𝑋 ≤ 0, 𝑝𝑙 = Pr[𝑋 ≤ 0] and 𝑋𝑟 := 𝑋𝑟 | 𝑋 ≥ 0,
𝑝𝑟 = Pr[𝑋 ≥ 0]. Note that 𝑋𝑙, 𝑋𝑟 are both non-negative logconcave random
variables and that 𝑝𝑙, 𝑝𝑟 ≥ 1/𝑒 by Lemma 2.3.8. By Proposition 2.3.1, 𝑝𝑙E[𝑋𝑙] =
E[𝑋−] = E[|𝑋|]/2 = E[𝑋+] = 𝑝𝑟E[𝑋𝑟]. We now see that

E[𝑋2] = 𝑝𝑙E[𝑋2
𝑙 ] + 𝑝𝑟E[𝑋2

𝑟 ] ≤⏟ ⏞ 
𝐿𝑒𝑚𝑚𝑎 2.3.9

2(𝑝𝑙E[𝑋𝑙]
2 + 𝑝𝑟E[𝑋𝑟]

2)

= E[|𝑋|](E[𝑋𝑙] + E[𝑋𝑟]) ≤ 𝑒E[|𝑋|]2.

We will also require the following concentration inequality for sums of non-
negative logconcave random variables.

Lemma 2.3.11. Let 𝑋1, . . . , 𝑋𝑛 ∈ R+ be independent non-negative logconcave
random variables with mean 𝜇. Then, the following holds:

1. Pr[
∑︀𝑛

𝑖=1𝑋𝑖 ≥ (1 + 𝜀)𝜇𝑛] ≤ 𝑒−𝑛(𝜀−ln(1+𝜀)) ≤ 𝑒−𝑛( 𝜀2

2(1+𝜀)2
)
, 𝜀 > 0.

2. Pr[
∑︀𝑛

𝑖=1𝑋𝑖 ≤ (1− 𝜀)𝜇𝑛] ≤ 𝑒−𝑛(− ln(1−𝜀)+𝜀) = 𝑒−𝑛(
∑︀∞

𝑗=2 𝜀
𝑗/𝑗), 𝜀 ∈ [0, 1].

Proof. By homogeneity, we assume wlog that 𝜇 = 1.
Proof of 1. Let 𝜆 := 𝜀

1+𝜀 . Then,

Pr[
𝑛∑︁

𝑖=1

𝑋𝑖 ≥ (1 + 𝜀)𝑛] ≤⏟ ⏞ 
Markov

E[𝑒𝜆
∑︀𝑛

𝑖=1 𝑋𝑖 ]𝑒−𝜆(1+𝜀)𝑛

≤⏟ ⏞ 
𝐿𝑒𝑚𝑚𝑎 2.3.9

(︂
1

1− 𝜆

)︂𝑛

𝑒−𝜆(1+𝜀)𝑛 = 𝑒−𝑛(𝜀−ln(1+𝜀)).

Proof of 2. Let 𝜆 := 𝜀
1−𝜀 . Then,

Pr[
𝑛∑︁

𝑖=1

𝑋𝑖 ≤ (1− 𝜀)𝑛] ≤⏟ ⏞ 
Markov

E[𝑒−𝜆
∑︀𝑛

𝑖=1 𝑋𝑖 ]𝑒𝜆(1−𝜀)𝑛

≤⏟ ⏞ 
𝐿𝑒𝑚𝑚𝑎 2.3.9

(︂
1

1 + 𝜆

)︂𝑛

𝑒−𝜆(1+𝜀)𝑛 = 𝑒−𝑛(− ln(1−𝜀)−𝜀).
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Finally, we will require concentration of truncated sums.

Lemma 2.3.12. Let𝑋1, . . . , 𝑋𝑛 ∈ R be i.i.d. mean zero logconcave random variables
with E[𝑋+

1 ] = 𝛼. Then, for 𝜀 ∈ [0, 1/2], we have that

1. Pr[
∑︀𝑛

𝑖=1𝑋
+
𝑖 ≥ (1 + 𝜀)2𝑛𝛼] ≤ 𝑒−

𝑛𝜀2

3𝑒 + 𝑒
− 𝑛𝜀2

2𝑒(1+𝜀) .

2. Pr[
∑︀𝑛

𝑖=1𝑋
+
𝑖 ≤ (1− 𝜀)2𝑛𝛼] ≤ 𝑒−

𝑛𝜀2

2𝑒 + 𝑒−
𝑛(1−𝜀)𝜀2

2𝑒 .

Proof. Define 𝑋 ′
1, . . . , 𝑋

′
𝑛 ∈ R+ to be i.i.d. copies of 𝑋1 | 𝑋1 ≥ 0 and let 𝑝 =

Pr[𝑋1 ≥ 0], where 1 − 1/𝑒 ≥ 𝑝 ≥ 1/𝑒 (Lemma 2.3.8). Let 𝐶 =
∑︀𝑛

𝑖=1 1[𝑋𝑖 ≥ 0],
which a binomial distribution with parameters 𝑛 and 𝑝. Since 𝑋1, . . . , 𝑋𝑛 are i.i.d.,∑︀𝑛

𝑖=1𝑋
+
𝑖 has the same law as

∑︀𝐶
𝑖=1𝑋

′
𝑖 . Therefore, by (2.1) and Lemma 2.3.11, we

have that

Pr[
𝐶∑︁
𝑖=1

𝑋 ′
𝑖 ≥ (1 + 𝜀)2𝑛𝛼] ≤ Pr[𝐶 ≥ ⌈(1 + 𝜀)𝑝𝑛⌉] + Pr[

⌊(1+𝜀)𝑝𝑛⌋∑︁
𝑖=1

𝑋 ′
𝑖 ≥ (1 + 𝜀)2𝑛𝛼]

≤ 𝑒−
𝑛𝑝𝜀2

3 + 𝑒
− (1+𝜀)𝑛𝑝𝜀2

2(1+𝜀)2 ≤ 𝑒−
𝑛𝜀2

3𝑒 + 𝑒
− 𝑛𝜀2

𝑒(1+𝜀) ,

and

Pr[
𝐶∑︁
𝑖=1

𝑋 ′
𝑖 ≤ (1− 𝜀)2𝑛𝛼] ≤ Pr[𝐶 ≤ ⌊(1− 𝜀)𝑝𝑛⌋] + Pr[

⌈(1−𝜀)𝑝𝑛⌉∑︁
𝑖=1

𝑋 ′
𝑖 ≤ (1− 𝜀)2𝑛𝛼]

≤ 𝑒−
𝑛𝑝𝜀2

2 + 𝑒−
𝑛𝑝(1−𝜀)𝜀2

2 ≤ 𝑒−
𝑛𝜀2

2𝑒 + 𝑒−
𝑛(1−𝜀)𝜀2

2𝑒 .

Khintchine inequality

The Khintchine inequality provides bounds on the moments of weighted sums
of independent ±1 random variables [Khi23; Haa81]. In Chapter 3, we will use
the following generalization to the case of random variables with bounded fourth
moments.

Lemma 2.3.13. Let 𝑋1, . . . , 𝑋𝑛 ∈ R be independent mean zero random variables
satisfying E[𝑋4

𝑖 ] ≤ 3E[𝑋2
𝑖 ]

2 <∞, ∀𝑖. Then, for any scalars 𝑎1, . . . , 𝑎𝑛 ∈ R, we have
that √︃

1

3
E[|
∑︁
𝑖

𝑎𝑖𝑋𝑖|4] ≤ E[|
∑︁
𝑖

𝑎𝑖𝑋𝑖|2] ≤ 3E[|
∑︁
𝑖

𝑎𝑖𝑋𝑖|]2.
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Proof. Letting 𝑍 := |
∑︀

𝑖 𝑎𝑖𝑋𝑖| ≥ 0, we wish to show
√︀
E[𝑍4] ≤ E[𝑍2] ≤ 3E[𝑍]2.

We first show that E[𝑍4] ≤ 3E[𝑍2]2, proving the first part of our claim:

E[𝑍4] =
∑︁
𝑖,𝑗,𝑘,𝑙

𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙E[𝑋𝑖𝑋𝑗𝑋𝑘𝑋𝑙] =
∑︁
𝑖

𝑎4𝑖E[𝑋4
𝑖 ] +

∑︁
𝑖 ̸=𝑗

3𝑎2𝑖 𝑎
2
𝑗E[𝑋2

𝑖 ]E[𝑋2
𝑗 ]

=
∑︁
𝑖

𝑎4𝑖 (E[𝑋4
𝑖 ]− 3E[𝑋2

𝑖 ]
2⏟  ⏞  

≤0

) +
∑︁
𝑖,𝑗

3𝑎2𝑖 𝑎
2
𝑗E[𝑋2

𝑖 ]E[𝑋2
𝑗 ]

≤ 3(
∑︁
𝑖

𝑎2𝑖E[𝑋2
𝑖 ])

2 = 3E[𝑍2]2.

As a consequence, we have

E[𝑍2] = E[𝑍2/3(𝑍4)1/3] ≤⏟ ⏞ 
Hölder

E[𝑍]2/3E[𝑍4]1/3 ≤⏟ ⏞ 
E[𝑍4]≤3E[𝑍2]2

31/3E[𝑍]2/3E[𝑍2]2/3,

which, after rearranging, gives E[|
∑︀

𝑖 𝑎𝑖𝑋𝑖|2] ≤ 3E[|
∑︀

𝑖 𝑎𝑖𝑋𝑖|]2.

Rejection sampling

In the proofs of Theorems 3.1.1 and 3.1.2 we make use of a tool called rejection
sampling. This tool allows us to change the distribution of a random variable𝑋 ∼ 𝒟.
It works by ‘accepting’ an evaluation of the variable with a probability that depends
on its value. Let us formally define a rejection sampling procedure first.

Definition 2.3.14. A rejection sampling procedure on a random variable 𝑋 is a
randomized algorithm 𝜓 that, given a realization of 𝑋 , outputs either reject or
accept.

Now the variable𝑋 conditioned on𝜓(𝑋) = accept, will be distributed according
to a probability 𝒟′. We can choose the distribution 𝒟′ by appropriately setting
Pr[𝜓(𝑋) = accept|𝑋]. This is formalized in the following lemma.

Lemma 2.3.15. Let𝑋,𝑌 be a random variable on some set 𝑆, with probability density
functions 𝑓𝑋 and 𝑓𝑌 , and Support(𝑌 ) ⊆ Support(𝑋). Suppose that 𝑓𝑌 (𝑠)

𝑓𝑋(𝑠) ≤ 𝐾 for
all 𝑠 ∈ 𝑆. Then there exists a rejection sampling procedure 𝜓 with Law(𝑋|𝜓(𝑋) =
accept) = Law(𝑌 ) and Pr[𝜓(𝑋) = accept] = 1

𝐾 .

Proof. Define 𝜓 such that:

Pr[𝜓(𝑋) = accept|𝑋 = 𝑥] =

{︃
𝑓𝑌 (𝑥)

𝐾𝑓𝑋(𝑥) 𝑥 ∈ Support(𝑋)

0 else
.
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This probability is well defined as 𝑓𝑌 (𝑥)
𝐾𝑓𝑋(𝑥) ≤

𝐾
𝐾 = 1 for all 𝑥 ∈ Support(𝑋). Now

Pr[𝜓(𝑋) = accept] =
∫︀
𝑥∈Support(𝑋)

𝑓𝑌 (𝑥)
𝐾𝑓𝑋(𝑥)𝑓𝑋(𝑥)𝑑𝑥 = 1

𝐾 . Call the variable 𝑋
conditioned (𝜓(𝑋) = accept), 𝑍 . Now:

𝑓𝑍(𝑧) =

𝑓𝑌 (𝑥)
𝐾𝑓𝑋(𝑥)𝑓𝑋(𝑥)

Pr[𝜓(𝑋) = accept]
=

𝑓𝑌 (𝑥)

𝐾 · 1/𝐾
= 𝑓𝑌 (𝑥).

This proves the statement.

2.4 Nets

Let S𝑑−1 = {𝑥 ∈ R𝑑 : ‖𝑥‖2 = 1} denote the unit sphere in R𝑑. We say that
𝑁 ⊆ S𝑑−1 is an 𝜀-net if for every 𝑥 ∈ S𝑑−1 there exists 𝑦 ∈ 𝑁 such that ‖𝑥−𝑦‖ ≤ 𝜀.
A classic result we will need is that S𝑑−1 admits an 𝜀-net𝑁𝜀 of size |𝑁𝜀| ≤ (1+ 2

𝜀 )
𝑑.

See, for example, [Ver18, Chapter 5]. We note that the same bound holds if we wish
to construct a net of some subset 𝐴 ⊆ S𝑑−1 and we wish to have 𝑁𝜀 ⊆ 𝐴.
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Chapter 3

An average-case analysis of branch-and-bound via
integrality gaps

In this chapter we analyze the ‘average-case complexity’ of the branch-and-bound
algorithm, by studying its performance on randomly generated integer programs.
Consider the following integer program with 𝑛 variables and𝑚 constraints:

valIP := max
𝑥

val(𝑥) = 𝑐T𝑥

s.t. 𝐴𝑥 ≤ 𝑏 (3.1)
𝑥 ∈ {0, 1}𝑛

For several classes of distributions we show that with high probability any branch-
and-bound tree for such an IP is of size only polynomial in the number of variables
of the IP. We will cover high-probability bounds on the performance of branch-and-
bound for the following distributions of random IPs:

• Theorem 3.1.4: Both 𝐴 and 𝑐 having independent entries uniformly sampled
from [0, 1], which was originally studied by [DDM23].

• Theorem 3.1.5: 𝐴 having independent columns, coming from logconcave
isotropic distribution and 𝑐 having independent entries from the standard
normal distribution, studied [BDM23]. This contains the special case where 𝐴
and 𝑐 have Gaussian entries, studied in [BDHT22].

• Theorem 3.1.5: 𝐴 having independent entries sampled uniformly from the
set {−𝑘, . . . , 𝑘} and 𝑐 having independent entries from the standard normal
distribution, studied in [BDM23].

• Theorem 3.1.5: 𝐴 having independent entries sampled uniformly from the
set {1, . . . , 𝑘} and 𝑐 having independent entries from the standard normal
distribution, studied in [BDM23].

The contents of this chapter are based on joint work with Daniel Dadush and Dan Mikulincer
[BDM23], and joint work with Daniel Dadush, Sophie Huiberts, and Samarth Tiwari [BDHT22;
BDHT21].

25
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The proofs of these results all make use of the framework introduced by [DDM23],
relating the size of the branch-and-bound tree to the additive integrality gap. To prove
the results, we show that the integrality gap for IPs sampled from distributions from
the latter three classes is at most𝑂(log(𝑛)2/𝑛)with probability at least 1−1/ poly(𝑛)
for constant𝑚. The proof relies on results on the discrepancy of random set systems
that are covered in Chapter 4.

3.1 Introduction

Bounds on the integrality gap

An important factor controlling our ability to solve IPs is the tightness of the linear
programming (LP) relaxation. A natural way to measure tightness is the size of the
gap

IPGAP := valLP− valIP,

where valLP relaxes 𝑥 ∈ {0, 1}𝑛 to 𝑥 ∈ [0, 1]𝑛.
The integrality gap of integer linear programs forms an important measure for

the complexity of solving said problem in a number of works on the average-case
complexity of integer programming [BV04a; DDM23; DF92; DF89; GM84; Lue82].

In practice, automated methods for tightening LP relaxations such as presolving
and cutting planes are crucial to the performance of modern IP solvers [BR07; AW13].
Presolving refers to simple inference rules applied to constraints in sequence, which
among other things are used to find implied variable fixings, tighten variable bounds
and strengthen the coefficients of inequalities [Sav94]. Cutting planes refers to
additional valid linear inequalities for the IP, which are often generated from the
optimal simplex tableau [CCZ10]. The effectiveness of cutting planes is very often
measured in terms of the fraction of the integrality gap they close, which helps
justify the integrality gap as a key metric in practice [BCC96; FS13; Fis+16].

In the framework of Dey, Dubey and Molinaro [DDM23] the size of branch-
and-bound trees is related to the integrality gap. For models directly captured by
their result, suitable bounds on the integrality gap have been proven for random
packing [DF89; GM84; Lue82], where the entries of (𝐴, 𝑐) are independent uniform
[0, 1]. For random packing IPs, when 𝑏 ∈ (𝑛/4, 𝑛/2)𝑚, Dyer and Frieze [DF89]
proved that IPGAP ≤ 2𝑂(𝑚) log2(𝑛)/𝑛 with probability at least 1 − 1/ poly(𝑛) −
2− poly(𝑚).

In this chapter, we analyze the integrality gap of (3.1) for three different cases.
Theorem 3.1.1 gives a high probability bound on the integrality gap for IPs with
entries of 𝑐 that are all independent Gaussian𝒩 (0, 1) distributed, and columns of 𝐴
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that are independently sampled from either a logconcave isotropic distribution, or
uniformly from the set of integer vectors with entries between −𝑘 and 𝑘. We refer
to these as Centered IPs.

We will show that in all these models the integrality gap will be bounded by
𝑔 = 𝑂𝑚(log2 𝑛/𝑛). This implies that the complexity of branch-and-bound grows as
𝑒𝑂𝑚(

√
𝑛𝑔) = 𝑒𝑂𝑚(log𝑛) = 𝑛𝑂𝑚(1).

Theorem 3.1.1 (Gap Bound for Centered IPs). For 𝑚 ≥ 1, 𝑛 ≥ poly(𝑚), 𝑏 ∈ R𝑚

with ‖𝑏−‖2 ≤ 𝑂(𝑛), if 𝑐 has i.i.d.𝒩 (0, 1) entries and the columns of𝐴 are independent
isotropic, logconcave random vectors whose support is contained in a ball of radius
𝑂(
√︀

log𝑛+
√
𝑚), then

Pr
(︂
IPGAP ≥ poly(𝑚)(log𝑛)2

𝑛

)︂
≤ 𝑛− poly(𝑚).

Furthermore, the same result holds if the entries of 𝐴 are distributed independently and
uniformly in {0,±1, . . . ,±𝑘} and 𝑏 ∈ Z𝑚 with ‖𝑏−‖2 ≤ 𝑂(𝑘𝑛), for any 1 ≤ 𝑘 ≤ 𝑛.

We recall that a random vector 𝑋 ∈ R𝑚 is isotropic if E[𝑋] = 0 (mean zero)
and E[(𝑋−E[𝑋])(𝑋−E[𝑋])T] = 𝐼𝑚 (identity covariance). Since one can apply an
affine transformation to any full dimensional random variable to make it isotropic,
this condition may be regarded as a useful normalization. When 𝐴 has i.i.d. 𝒩 (0, 1)
entries, we remark that the columns of 𝐴 have norm bounded by 𝑂(

√
𝑚+

√︀
log𝑛)

with probability 1− 1/ poly(𝑛) by standard tail bounds. Thus, this Gaussian setting
is captured by the theorem.

Theorem 3.1.2 provides a similar bound for when the entries of 𝑐 come from an
exponential distribution and the entries of𝐴 are uniformly sampled from {1, . . . , 𝑘}.
It can be seen as a discrete variant of the random packing IP gap bound of [DF89].

Theorem 3.1.2 (Discrete Packing IPs). For 𝑚 ≥ 1, 𝑘 ≥ 3, 𝛽 ∈ (0, 1/4), 𝑛 ≥
poly(𝑚, 𝑘) exp(Ω(1/𝛽)), 𝑏 ∈ ((𝑘𝑛𝛽, 𝑘𝑛(1/2− 𝛽)) ∩ Z)𝑚, if 𝑐 has i.i.d. exponential
entries and the entries of 𝐴 are independent and uniform in {1, . . . , 𝑘}, then

Pr
(︂
IPGAP ≥ exp(𝑂(1/𝛽)) poly(𝑚)(log𝑛)2

𝑛

)︂
≤ 𝑛− poly(𝑚).

Compared to [DF89] we require exponentially distributed objective coefficients,
i.e., with density 𝑒−𝑥, 𝑥 ≥ 0, instead of uniform [0, 1]. The additional smoothness of
the distribution makes the arguments much cleaner while preserving the qualitative
nature of the results. We remark that extending the above gap bound to the setting of
non-negative logconcave random vectors is also possible, though we do not pursue
this here.
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The above results extend our understanding of gap bounds in two significant
ways. Firstly, they show that strong gap bounds are obtainable when the entries
of the constraint matrix take only small integer values. This is well motivated by
the fact that the constraints for practical IPs are often combinatorial and thus are
expressed using small integer coefficients. Secondly, in the case of centered IPs,
we show that non-trivial correlations between the variables in a column of the
constraint (induced by logconcavity) can be handled. Thus, we establish a limited
form of universality for these gap bounds.

We would like to stress that neither of these extensions is a priori obvious. To
highlight the subtleties in the discrete setting, we note that even for 𝑚 = 1, the
gap bound does not hold when the right hand side 𝑏 is non-integral. As a simple
example, it is easy to see that for 𝑛 odd, the integrality gap of the knapsack program
max

∑︀𝑛
𝑖=1 𝑥𝑖 subject to

∑︀𝑛
𝑖=1 𝑥𝑖 ≤ 𝑛/2, 𝑥 ∈ {0, 1}𝑛 is 1/2. It is not hard to check

that a constant gap is preserved with overwhelming probability even if the profit
vector 𝑐 is exponentially distributed and weights 𝑎1, . . . , 𝑎𝑛 are drawn uniformly
from {1, . . . , 𝑘}, for 𝑘 fixed.

To circumvent the above issue, a crucial step in our proof in the discrete setting
is to show that we can round the optimal LP solution 𝑥* to an integer solution
𝑥′ that is tight on the same set of constraints. That is, (𝐴𝑥*)𝑖 = 𝑏𝑖 ⇒ (𝐴𝑥′)𝑖 =
𝑏𝑖, ∀𝑖 ∈ [𝑚] (which is only possible if 𝑏 is integral). Indeed, one of our main technical
contributions, described in the next section, is to give general conditions under which
such exact roundings are possible, using Fourier analytic techniques from discrepancy
theory. We remark that Dyer and Frieze [DF92] believed that a discrete extension of
their gap bounds should be possible, provided the range of the discrete distribution
(i.e., 𝑘 above) grows with 𝑛, which we confirm here without this assumption1.

Beyond generalizing previous work, our results also improve the probabilistic
guarantees. Compared to prior works, our gap bounds hold with high probability
1− 1/ poly(𝑛) instead of 1− 1/ poly(𝑛)− 2− poly(𝑚) (which does not converge to
1 as 𝑛 grows for fixed𝑚). Achieving a high probability bound via prior estimates
increases the gap by an 𝑂(log𝑛) factor, which makes the corresponding branch-
and-bound complexity quasi-polynomial instead of polynomial.

Is it natural to ask whether there are natural limitations to extending these
gap bounds to much wider classes of IPs. For logconcave random IPs, one may
observe that any worst-case instance can be encoded as the mean E[(𝐴, 𝑏, 𝑐)] of the
random instance. In this way, one can view the distribution (𝐴, 𝑏, 𝑐) as a smoothed
version of worst-case IP instance E[(𝐴, 𝑏, 𝑐)]. By appropriately scaling up the means,

1We note that our gap bounds seemingly require that 𝑛 be somewhat larger than the range 𝑘.
This is an artificial restriction. For (very) large 𝑘, one must treat the discrete distribution as if it were
continuous, which requires a slight adaptation of the proofs.
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or equivalently scaling down the variance of the entries of (𝐴, 𝑏, 𝑐), the instance
(𝐴, 𝑏, 𝑐) converges to the worst-case instance E[(𝐴, 𝑏, 𝑐)]. It is not hard to check
that for many hard combinatorial problems such as SET COVER or MAX 3-SAT,
adding small random perturbations (of appropriate sign) to the instance data does
not change the optimal solution, and thus we cannot expect strong integrality gap
results in these settings.

We note that smoothed analysis of integer programming has indeed been studied
by various works [BV04a; RV07]. In particular, Röglin and Vöcking [RV07] showed
that under mild conditions, the class of IPs that are easy to solve on average
over suitable random perturbations of the instance data (i.e., that can be solved
in polynomial time with high probability over the perturbations) correspond exactly
to the class of IPs solvable in pseudopolynomial time.

Bounds on the tree size

In recent breakthrough work, Dey, Dubey and Molinaro [DDM23] provided a
framework for deriving upper bounds on the size of branch-and-bound trees for
random IPs with small integrality gaps. Their framework consists of two parts. In the
first part, one deterministically relates the size of any branch-and-bound tree using
best-first search node selection to the size of knapsack polytopes whose weights
are induced by reduced costs and whose capacity is equal to the integrality gap.
We recall that in the best-first node selection rule, the next node to be processed is
always the node whose LP relaxation value is the largest.

In the second part of the framework, one leverages the randomness in the
coefficients of 𝐴, 𝑐 to upper bound the maximum size of the knapsack in (3.6). The
authors of [DDM23], give such an upper bound for the specific packing instances
studied by Dyer and Frieze [DF89]. In this chapter, we generalize their probabilistic
framework to all IPs with independent continuously distributed entries of 𝑐. We
now state our main meta-theorem, which we prove in Section 3.2.

Theorem 3.1.3. Let𝐴 ∈ R𝑚×𝑛, 𝑏 be random variables. Let 𝑐1, . . . , 𝑐𝑛 be independent
random variables, each having probability density at most 1. Let 𝑃 ⊆ [0, 1]𝑛 be an
integral polytope. Then, for 𝑔 ≥ 0, 𝛿 ∈ (0, 1), with probability at least

1− Pr
𝐴,𝑏,𝑐

[IPGAP ≥ 𝑔]− 𝛿,

the branch-and-bound algorithm equipped with the best-first search rule applied to the
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ILP

max 𝑐T𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ∈ 𝑃 ∩ {0, 1}𝑛.

produces a tree of size at most

𝑛𝑂(𝑚) exp(
√
12𝑛𝑔)

𝛿
(3.2)

The above statement is more general than its equivalent in [BDM23, Theorem
3] in two ways. Firstly, the result also holds when 𝑃 is not equal to the standard
[0, 1]𝑛 hypercube. This allows us to obtain a bound on the tree size for instances of
the generalized assignment problem, which is not covered by the previous result.
Secondly, the above theorem does not pose any restrictions on the distribution of
the entries of 𝐴.

When 𝐴, 𝑐 have i.i.d. uniform [0, 1] coefficients and 𝑏 = 𝛽𝑛, 𝛽 ∈ (0, 1/2)𝑚 and
𝛽min := min𝑖∈[𝑛] 𝛽𝑖, Dyer and Frieze [DF89] proved that for 𝑛 large enough

Pr
𝐴,𝑐

[IPGAP ≥ 𝛼𝑎1 log2 𝑛/𝑛] ≤ 2−𝛼/𝑎2 + 1/(2𝑛), ∀𝛼 ≥ 1,

where 𝑎1 = Θ(1/𝛽min)
𝑚 and 𝑎2 = 2Θ(𝑚). In [DDM23], Dey, Dubey and Molinaro

use this integrality gap result combined with a probabilistic analysis of the bound
in Theorem 3.2.1 to show that the tree size is at most

𝑛𝑂(𝑚𝑎1 log 𝑎1+𝛼𝑎1 log𝑚)

with probability 1− 2−𝛼/𝑎2 − 1/𝑛.
A stronger bound can be obtained from Theorem 3.1.3. Plugging the integrality

gap 𝑔 = 𝛼𝑎1 log2 𝑛/𝑛 into Theorem 3.1.3 with 𝛿 = 2𝛼/𝑎2 , we immediately get the
following improved tree size bound.

Theorem 3.1.4. With probability 1− 2−𝛼/𝑎2 − 1/𝑛 the branch-and-bound algorithm,
equipped with the best-first node selection rule, applied to (3.1) produces a tree of size
at most 𝑛𝑂(𝑚)+

√
3𝛼𝑎1 when 𝐴, 𝑐 have i.i.d. uniform [0, 1] coefficients and 𝑏 = 𝛽𝑛,

𝛽 ∈ (0, 1/2)𝑚, 𝛽min := min𝑖∈[𝑛] 𝛽𝑖 and 𝑎1 = Θ(1/𝛽min)
𝑚 and 𝑎2 = 2Θ(𝑚)

Proceeding in a similar fashion, we can easily derive a tree-size bound for
Gaussian IPs by combining the previous theorem with Theorems 3.1.1 and 3.1.2.

Theorem 3.1.5. With probability 1− 1/ poly(𝑛), the branch-and-bound algorithm,
equipped with the best-first node selection rule, applied to (3.1) produces a tree of size at
most 𝑛poly(𝑚) in the Centered IP model of Theorem 3.1.1 and of size 𝑛exp(𝑂(1/𝛽)) poly(𝑚)

in the Discrete Packing IP model from Theorem 3.1.2.
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Proof overview

To bound the integrality gap, our proof strategy follows along similar lines to that
of Dyer and Frieze [DF89], which we now describe. In their strategy, one first solves
an auxiliary LP max 𝑐T𝑥,𝐴𝑥 ≤ 𝑏− 𝜀1𝑚, for 𝜀 > 0 small, to get its optimal solution
𝑥*, which is both feasible and nearly optimal for the starting LP (proved by a simple
scaling argument), together with its optimal dual solution 𝑢* ≥ 0 (see Section 3.3 for
the formulation of the dual). From here, they round down the fractional components
of 𝑥* to get a feasible IP solution 𝑥′ := ⌊𝑥*⌋. We note that the feasibility of 𝑥′
depends crucially on the packing structure of the LPs they work with, i.e., that 𝐴
has non-negative entries (which does not hold in the Gaussian setting).

Finally, they construct a nearly optimal integer solution 𝑥′′, by carefully choosing
a subset of coordinates 𝑇 ⊆ {𝑖 ∈ [𝑛] : 𝑥′𝑖 = 0} of size𝑂(poly(𝑚) log𝑛), where they
flip the coordinates of 𝑥′ in 𝑇 from 0 to 1 to get 𝑥′′. The coordinates of 𝑇 are chosen
according to the following criteria. Firstly, the coordinates should be very cheap to flip,
which is measured by the absolute value of their reduced costs. Namely, they enforce
that |𝑐𝑖 −𝐴T

𝑖 𝑢
*| = 𝑂(log𝑛/𝑛), ∀𝑖 ∈ 𝑇 . Secondly, 𝑇 is chosen to make the excess

slack ‖𝐴(𝑥* − 𝑥′′)‖∞ ≤ 1/ poly(𝑛), i.e., negligible. We note that guaranteeing the
existence of 𝑇 is highly non-trivial. Crucial to the analysis is that after conditioning
on the exact value of 𝑥* and 𝑢*, the columns of𝑊 :=

[︀
𝑐T 𝐴

]︀T ∈ R(𝑚+1)×𝑛 (the
objective extended constraint matrix) that are indexed by 𝑁0 := {𝑖 ∈ [𝑛] : 𝑥*𝑖 = 0}
are independently distributed subject to having negative reduced cost, i.e., subject
to 𝑐𝑖 − 𝐴T

𝑖 𝑢
* < 0 for 𝑖 ∈ 𝑁0 (see Lemma 3.3.2). It is the large amount of left-over

randomness in these columns that allowed Dyer and Frieze to show the existence
of the subset 𝑇 via a discrepancy argument (more on this below). Given a suitable
𝑇 , a simple sensitivity analysis is used to show the bound on the gap between 𝑐T𝑥′′
and the (Primal LP) value. This analysis uses the basic formula for the optimality
gap between primal and dual solutions (see (Gap Formula) in subsection 3.3), and
relies upon bounds on the size of the reduced costs of the flipped variables, the total
excess slack and the norm of the dual optimal solution 𝑢*.

The discrepancy theorem

To apply this approach for centered IPs and discrete packing IPs, the main challenge
is to find an analogue to the discrepancy lemma of Dyer and Frieze [DF89, Lemma
3.4]. This lemma posits that for any large enough set of “suitably random” columns
in R𝑚 and any not too big target vector 𝐷 ∈ R𝑚, with non-negligible probability
there exists a set containing half the columns whose sum is very close to 𝐷. This
is the main lemma used to show the existence of the subset 𝑇 , chosen from a
suitably filtered subset of the columns of 𝐴 in𝑁0, used to reduce the excess slack. In
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Chapter 4 we prove an improved version of the lemma (Theorem 4.3.4) that works for
centered IPs and discrete packing IPs. The results hold for approximately symmetric,
anti-concentrated probability distributions, as defined below.

Definition 4.3.1 (approximately symmetric distributions). A probability distribution
𝒟 on R𝑚, with mean 𝜇, is called approximately symmetric if, for any 𝜈 ∈ R𝑚,

Pr
𝑋∼𝒟

(⟨𝑋, 𝜈⟩ ≥ ⟨𝜇, 𝜈⟩) ≥ 1

4𝑒2
.

Observe that all symmetric distributions are approximately symmetric.

Definition 4.3.3 (anti-concentration). Let 𝜎 ≥ 0 and 𝜅 ∈ (0, 1). We say the measure
𝒟 is (𝜎, 𝜅)-anti-concentrated if Cov(𝒟) ⪯ 𝜎2𝐼𝑚, and for any 𝜈 ∈ R𝑚 and any 𝜃 ∈ 𝑉 ,

Pr
𝑋∼𝒟

[︀
𝑑(𝜃T𝑋,Z) ≥ 𝜅min (1, ‖𝜃‖∞𝜎) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩

]︀
≥ 𝜅, (AC)

where 𝑑(𝜃T𝑋,Z) := inf
𝑧∈Z
|𝜃T𝑋 − 𝑧|. When 𝜎 is clear from the context, we will

sometimes omit the dependence on 𝜎 from the definition.

We use the following corollaries to lemma to prove our bounds on the integrality
gap.

Theorem 4.3.5. Suppose the columns of 𝐴 ∈ R𝑚×𝑛 are continuously distributed,
independent with a common mean 𝜇 ∈ R𝑚, are approximately symmetric around their
mean, and (Θ(1),Ω(1))-anti-concentrated. Let 𝑝 ∈ [0, 1] with poly(𝑚) log(𝑛)

𝑛 ≤ 𝑝 ≤
1

poly(𝑚) .

Then, with probability 1−𝑒−Ω(𝑝𝑛) for every 𝑡with ‖𝑡−𝑝𝑛𝜇‖ ≤ 𝑂
(︁ √

𝑝𝑛
log(𝑚)𝑚

)︁
there

exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that ‖𝐴1𝑆 − 𝑡‖ ≤ exp
(︀
−Ω(𝑝𝑛𝑚 )

)︀
.

The above corollary includes the case where the columns of 𝐴 are logconcave,
isotropic, by Lemma 4.4.1.

Theorem 4.3.7. Suppose the entries of𝐴 are uniformly sampled from {𝑖, 𝑖+1, . . . , 𝑖+

𝑘} for 𝑘 ≥ 𝑗 ≥ max(2, |𝑖|). Let 𝑝 ∈ [0, 1] with poly(𝑚) log(𝑛) log(𝑘)
𝑛 ≤ 𝑝 ≤ 1

poly(𝑚) .

Then, with probability 1 − 𝑒−Ω(𝑝𝑛) for every vector 𝑡 ∈ Z𝑛 with ‖𝑡 − 𝑝𝑛𝜇‖ ≤
𝑂
(︁
𝑘

√
𝑝𝑛

log(𝑚)𝑚

)︁
there exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that 𝐴1𝑆 = 𝑡.

In addition to generalizing the discrepancy lemma to work for both logconcave
and discrete probability distributions, these corollaries also provide a quantitative
improvement. Namely, for each of the statements the failure probability decreases
exponentially in 𝑛, whereas in [DF89], the probability of failure is constant.
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When applying the above to find the slack repairing set 𝑆, 𝑛 will roughly be
𝑂(poly(𝑚) log𝑛) and 𝑝 = 1/ poly(𝑚). The corresponding success probability will
now be 1− 𝑛− poly(𝑚) as opposed to Θ(1), which is what allows us to prove much
better tail bounds for the integrality gap.

Gap bounds via discrepancy

Given the discrepancy theorem, the proof of the gap bounds mirrors the proofs
in [DF89; BDHT22] as described above, though with non-trivial technical adaptations
as well as some simplifications.

As in prior work, the relevant properties of the optimal primal 𝑥* and dual
solution 𝑢* must be established in these generalized settings (see Lemma 3.3.4
and Lemma 3.3.12). In particular, one must show that the norm of 𝑢* is suitably
bounded, and that there are sufficiently many columns of𝐴with small reduced costs
indexed by the zeros of 𝑥*. These properties can be derived using standard tools for
concentration and anti-concentration of logconcave and uniform discrete random
variables.

Providing “nice enough” columns for our discrepancy theorem can however
be challenging. For centered IP where 𝐴 has independent logconcave columns,
conditioning on the size of the reduced costs can significantly perturb the mean of
each column (possibly in different directions when the columns are not i.i.d.). We
overcome this problem using sophisticated forms of rejection sampling, which allows
to “virtually recenter” each logconcave column (see Lemma 3.3.9). Interestingly,
the rejection sampling procedure does not even preserve logconcavity, however
the properties required for our more general discrepancy theorem persist (see
Theorem 4.3.4).

In terms of simplifications, compared to earlier proofs we no longer require
repeated trials on disjoint subsets of columns of 𝐴 to find a suitable slack repairing
set 𝑇 . In particular, due to our new discrepancy theorem, using all the small reduced
cost columns together both exponentially decreases the probability of failure and
increases the size of the targets one can hit. Furthermore, since the discrepancy
theorem directly applies to columns with non-zero means, one can avoid ad-hoc
reductions to the mean-zero case as in the proof of [DF89] for the packing case.
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Improvements for centered IPs

We can see that there is an important difference between the result for discrete
packing instances in Theorem 3.1.2 and the one for centered IPs in Theorem 3.1.1: in
the former, we require the entries of 𝑏 to be contained in (𝑘𝑛𝛽,𝑂(𝑘𝑛(1/2−𝛽))) for
some 𝛽 ∈ (0, 1/4) which occurs in the probability bound, whereas in the latter, we
only require that ‖𝑏−‖2 ≤ 𝑂(𝑛). The strict requirements from the discrete packing
case also appear in the bound for IPs with uniformly random coefficients of Dyer
and Frieze [DF89].

This difference results from the fact that the proof involves flipping the with
columns of 𝐴 having reduced costs in [−𝛿, 0] for some small 𝛿 > 0. The number
of such suitable columns increases as 𝛿 grows larger. In the centered case, when
‖𝑏−‖2 ≤ 𝑂(𝑛) we get enough suitable columns by setting 𝛿 = poly(𝑚) log(𝑛)

𝑛 .
In the packing setting, setting 𝛿 = poly(𝑚) log(𝑛)

𝑛 would also result in a sufficient
number of suitable columns, as long as the entries of 𝑏 are 𝑂(𝑘𝑛). However, the
distribution of these columns does not satisfy the anti-concentration property in
Eq. (AC). By using a step of rejection sampling with success probability exp(𝑂(1/𝛽)),
we can make the distribution satisfy the property. To compensate for the loss in
success probability, 𝛿 needs to be increased to exp(𝑂(1/𝛽)) poly(𝑚) log(𝑛)

𝑛 , which results
in an extra factor of exp(𝑂(1/𝛽)) in the integrality gap bound.

Related work

The worst-case complexity of solving max{𝑐T𝑥 : 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑥 ∈ Z𝑛} scales
as 𝑛𝑂(𝑛) times a polynomial factor in the bit complexity of the problem. This is a
classical result due to Lenstra [Len83] and Kannan [Kan87] which is based on lattice
basis reduction techniques.

Beyond these worst-case bounds, the performance of basis reduction techniques
for determining the feasibility of random integer programs has been analyzed. In this
context, basis reduction is used to reformulate𝐴𝑥 ≤ 𝑏, 𝑥 ∈ Z𝑛 as𝐴𝑈𝑤 ≤ 𝑏, 𝑤 ∈ Z𝑛

for some unimodular matrix 𝑈 ∈ Z𝑛×𝑛, after which a simple variable branching
scheme is applied (i.e., branching on integer hyperplanes in the original space). Furst
and Kannan [FK89] showed that subset-sum instances of the form

∑︀𝑛
𝑖=1 𝑥𝑖𝑎𝑖 = 𝑏,

𝑥 ∈ {0, 1}𝑛, where each 𝑎𝑖, 𝑖 ∈ [𝑛], is chosen uniformly from {1, . . . ,𝑀} and
𝑏 ∈ Z+, can be solved in polynomial time with high probability in this way if
𝑀 = 2Ω(𝑛2). Pataki, Tural and Wong [PTW10] proved generalizations of this result
for IPs of the form 𝑓 ≤ 𝐴𝑥 ≤ 𝑔, 𝑙 ≤ 𝑥 ≤ 𝑢, 𝑥 ∈ Z𝑛, where the coefficients of 𝐴 are
uniform in {1, . . . ,𝑀} and𝑀 is “large” compared to ‖(𝑔 − 𝑓, 𝑢− 𝑙)‖. Apart from
the different type of branching, compared to the present work, we note that the IPs
analyzed in these models are either infeasible or have a unique feasible solution with
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high probability.
Another line of works has analyzed dynamic programming algorithm solving

IPs with integer data [EW19; JR23; Pap81]. For 𝐴 ∈ Z𝑚×𝑛, 𝑏 ∈ Z𝑚, [JR23] proved
that max{𝑐T𝑥 : 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑥 ∈ Z𝑛} can be solved in 𝑂(

√
𝑚Δ)2𝑚 log(‖𝑏‖∞) +

𝑂(𝑛𝑚) time, where Δ is the largest absolute value of entries in the input matrix 𝐴.
Integer programs of the form max{𝑐T𝑥 : 𝐴𝑥 = 𝑏, 0 ≤ 𝑥 ≤ 𝑢, 𝑥 ∈ Z𝑛} can similarly
be solved in time

𝑛 ·𝑂(𝑚)(𝑚+1)2 ·𝑂(Δ)𝑚·(𝑚+1) log2(𝑚 ·Δ),

which was proved in [EW19]. Note that integer programs of the form max{𝑐T𝑥 :
𝐴𝑥 ≤ 𝑏, 𝑥 ∈ {0, 1}𝑛} can be rewritten in this latter form by adding𝑚 slack variables.

The complexity of integer programming has also been studied from the perspec-
tive of smoothed analysis. In this context, Röglin and Vöcking [RV07] proved that a
class of IPs satisfying some minor conditions has polynomial smoothed complexity
if and only if that class admits a pseudopolynomial time algorithm. An algorithm
has polynomial smoothed complexity if its running time is polynomial with high
probability when its input has been perturbed by adding random noise, where the
polynomial may depend on the inverse magnitude 𝜙−1 of the noise as well as the
dimensions 𝑛,𝑚 of the problem. An algorithm runs in pseudopolynomial time if
the running time is polynomial when the numbers are written in unary, i.e., when
the input data consists of integers of absolute value at most Δ and the running
time is bounded by a polynomial 𝑝(𝑛,𝑚,Δ). In particular, they prove that solving
the randomly perturbed problem requires only polynomially many calls to the
pseudopolynomial time algorithm with numbers of size (𝑛𝑚𝜙)𝑂(1) and considering
only the first 𝑂(log(𝑛𝑚𝜙)) bits of each of the perturbed entries.

Few results are known on the complexity of the branch-and-bound algorithm
for specific problem classes. For a small number of combinatorial problems such as
vertex cover [Lok+14] and multiway cut [Lok+14] the algorithm has been shown
to be FPT when parameterized by the integrality gap of the natural LP relaxation.
Since then, multiple general frameworks for capturing such problems have been
developed [IWY16; Wah17]. These results crucially rely on the use of half-integral
and persistent LP relaxations, which are known only for very structured problems.
The results presented here thus mainly provide complementary evidence for the
effectiveness of branch-and-bound in the unstructured setting.

While branching on variables is most common in practice, there is a theoretical
line of work examining the effectiveness of branching schemes for solving random
integer programs based on general integer disjunctions. These schemes rely on
sophisticated lattice basis reduction methods [LLL82] and follow the template of
Lenstra’s celebrated polynomial time algorithm for integer programming in fixed
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dimension [Len83]. In particular, Furst and Kannan [FK89] showed that certain
random subset-sum instances can be solved in polynomial time via basis reduction,
and Pataki, Tural and Wong [PTW10] extended these results to certain IPs with
multiple constraints. Apart from the different type of branching, compared to the
present work, the IPs analyzed in these models are either infeasible or have a unique
feasible solution with high probability.

Bounds on the integrality gap. In prior work, strong gap bounds have also been
proven for random instances of combinatorial optimization problems, though this
has not translated into good upper bounds on the size of branch-and-bound trees.
Frieze and Sorkin [FS07] showed that the cycle cover relaxation for the asymmetric
TSP has an expected 𝑂(log2 𝑛/𝑛) additive integrality gap, where the edge weights
are chosen uniformly from [0, 1] for a complete digraph on 𝑛 vertices and gave
a 2𝑂̃(

√
𝑛) algorithm which solves these instances with high probability. It is an

interesting open question to understand if LP-based branch-and-bound can recover
the same running times as the specialized algorithms above for these problems.

Organization

In Section 3.2 we prove the meta-theorem for the size of the branch-and-bound tree.
Our main contribution, the gap bounds for centered IPs and discrete packing IPs,
are proven in Section 3.3. In Section 3.4 we conclude the chapter with some open
problems.

3.2 Bounding the tree size

In this chapter, we will prove bounds on the size of the branch-and-bound tree for
integer programs of the following form.

valIP = max 𝑐T𝑥
s.t. 𝐴𝑥 ≤ 𝑏 (3.3)

𝑃 ∩ {0, 1}𝑛.

Here 𝑃 is a polytope contained in [0, 1]𝑛. The integrality gap of this ILP is defined
as IPGAP := valLP− valIP, where

valLP := max
𝑥

valLP(𝑥) = 𝑐T𝑥

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑃. (3.4)
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The bounds will make use of the Lagrangian dual of (3.4):

vallag := min
𝑢≥0

max
𝑥∈𝑃

vallag(𝑢, 𝑥) := ⟨𝑐, 𝑥⟩ − 𝑢T(𝐴𝑥− 𝑏). (Lagrangian Dual)

By strong duality, assuming (3.4) is feasible, we have that valLP = vallag.
To use the integrality gap bounds to provide bounds on the size of the branch-

and-bound tree, Dey, Dubey and Molinaro relate the size of the branch-and-bound
tree to the number of solutions to some knapsack problem [DDM23, Theorem 3].
Their result is stated for the case where 𝑃 = [0, 1]𝑛, but we note that it holds for
any polytope 𝑃 ⊆ [0, 1]𝑛. We state this slightly generalized result below.

Theorem 3.2.1. Suppose 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛. Let 𝑃 ⊆ [0, 1]𝑛 be an integral
polytope. Consider a binary integer program of the form

max 𝑐T𝑥
s.t. 𝐴𝑥 ≤ 𝑏 (3.5)

𝑥 ∈ 𝑃 ∩ {0, 1}𝑛.

Then, the branch-and-bound algorithm, equipped with the best-first node selection rule,
produces a tree of size

2𝑛 · |𝑆|+ 1, (3.6)

where

𝑆 = {𝑥 ∈ 𝑃 ∩ {0, 1}𝑛 : (𝑐T − 𝑢T𝐴)(𝑥* − 𝑥) ≤ IPGAP}.

Here we use 𝑢* for an optimal solution to (Lagrangian Dual).

Proof. Let (𝑥*, 𝑢*) be an optimal solution pair for (Lagrangian Dual). Observe that
we have vallag(𝑢*, 𝑥*) = valLP. Now consider the nodes of the branch-and-bound
tree. For every node 𝑁 in the tree let 𝐹𝑁 ⊆ 𝑃 be the set of points that is feasible
with respect to all the branching constraints that apply to this node. That is, for the
root node 𝑅, we have 𝐹𝑅 = 𝑃 .

Because the best-first node selection rule is used, we know that for any node 𝑁
in the tree that is branched on, we have:

𝑐T𝑥* − IPGAP ≤ max{𝑐T𝑥 : 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝐹𝑁}.
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Now we can show:

vallag(𝑢*, 𝑥*)− IPGAP = 𝑐T𝑥* − IPGAP

≤ max{𝑐T𝑥 : 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝐹𝑁}
= min

𝑢≥0
max
𝑥∈𝐹𝑁

vallag(𝑢, 𝑥)

≤ max
𝑥∈𝐹𝑁

vallag(𝑢*, 𝑥)

= max
𝑥∈𝐹𝑁∩Z𝑛

vallag(𝑢*, 𝑥).

Here the first two equalities follow from the fact that the value of an LP is equal to
that of its Lagrangian relaxation. The last equality follows because all vertices of
𝐹𝑁 are integral, since 𝐹𝑁 is an integral polytope. The fact that 𝐹𝑁 is an integral
polytope follows from the fact that it is the intersection of a polytope spanned by
0-1 vectors and hyperplanes of the form 𝑥𝑖 = 0 and 𝑥𝑖 = 1.

Rewriting the above, we have:

max
𝑥∈𝐹𝑁∩Z𝑛

(𝑐T − 𝑢T𝐴)(𝑥* − 𝑥) = vallag(𝑢*, 𝑥*)− max
𝑥∈𝐹𝑁∩Z𝑛

vallag(𝑢*, 𝑥)

≤ IPGAP.

For each node𝑁 that is branched on, choose 𝑥𝑁 ∈ argmax𝑥∈𝐹𝑁∩Z𝑛(𝑐T−𝑢T𝐴)(𝑥*−
𝑥). From the above it is immediately clear that 𝑥𝑁 ∈ 𝑆. Furthermore, a vector 𝑥
can only be contained in 𝐹𝑁 ∩ 𝐹𝑁 ′ if 𝑁 ′ is either an ancestor or a descendant of 𝑁 .
Since the depth of a branch-and-bound tree is at most 𝑛, this implies that a point 𝑥
is contained in at most 𝑛 sets 𝐹𝑁 . Hence, we have:

|nodes branched on in b&b-tree| ≤ 𝑛|𝑆|.

Every internal node of the tree is branched on. Since the branch-and-bound tree is
binary, we have:

|nodes in b&b-tree| ≤ 2|internal nodes in b&b-tree|+ 1 ≤ 2𝑛|𝑆|+ 1.

As in [DDM23], we relate the set 𝑆 to the solutions of a knapsack problem.

Lemma 3.2.2. The set𝑆 defined inTheorem 3.2.1 has size at most |𝐾(𝐴, 𝑐, 𝑢*, IPGAP)|,
where

𝐾(𝐴, 𝑐, 𝑢*, IPGAP) = {𝑥 ∈ {0, 1}𝑛 :
𝑛∑︁

𝑖=1

𝑥𝑖|(𝐴T𝑢* − 𝑐)𝑖| ≤ IPGAP}.
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Proof. Let 𝑆′ = {𝑥 ∈ {0, 1} : (𝑐T − 𝑢T𝐴)(𝑥* − 𝑥) ≤ IPGAP}. Note that 𝑆 ⊆ 𝑆′

and that equality holds whenever 𝑃 = [0, 1]𝑛. Consider the following function 𝑓 :

𝑓(𝑥)𝑖 =

{︃
1− 𝑥𝑖 if 𝑥*𝑖 = 1

𝑥𝑖 otherwise
.

It is clear that 𝑓 is injective. Now we will show that 𝑓(𝑆′) ⊆ 𝐾(𝐴, 𝑐, 𝑢*, IPGAP),
which will prove the lemma.

Consider an arbitrary 𝑥 ∈ 𝑆′. By optimality of 𝑥*, we have 𝑥*𝑖 = 1 for all 𝑖 with
(𝑐−𝐴T𝑢*)𝑖 > 0 and 𝑥*𝑖 = 0 for all 𝑖 with (𝑐−𝐴T𝑢*)𝑖 < 0:

(𝑐T − 𝑢*T𝐴)(𝑥* − 𝑥) =
∑︁

𝑖:𝑥*
𝑖=1

(𝑐−𝐴T𝑢*)𝑖1𝑥𝑖 ̸=𝑥*
𝑖
−
∑︁

𝑖:𝑥*
𝑖=0

(𝑐−𝐴T𝑢*)𝑖1𝑥𝑖 ̸=𝑥*
𝑖

=

𝑛∑︁
𝑖=1

|(𝑐−𝐴T𝑢*)𝑖|1𝑥𝑖 ̸=𝑥*
𝑖
=

𝑛∑︁
𝑖=1

|(𝑐−𝐴T𝑢*)𝑖|𝑓(𝑥)𝑖.

So
∑︀𝑛

𝑖=1 |(𝑐−𝐴T𝑢*)𝑖|𝑓(𝑥𝑁 ) ≤ IPGAP.

The next step is to bound the size of the set𝐾(𝐴, 𝑐, 𝑢*, IPGAP). The bound given
by [DDM23] only holds for uniformly distributed objective coefficients. We prove a
bound that holds whenever the objective coefficients are continuously distributed
with a bounded density. We make use of the following auxiliary lemma.

Lemma 3.2.3. Let𝐴 ∈ R𝑚×𝑛, 𝛾 ≥ 0. Let 𝑐1, . . . , 𝑐𝑛 be independent random variables,
each having probability density at most 1. Now:

Pr

[︃
max
𝑢∈R𝑚

𝑛∏︁
𝑖=1

(︁
1 + 𝑒−𝛾|𝐴T

𝑖𝑢−𝑐𝑖|
)︁
≥ 𝛿−1 (3𝑛𝛾)𝑚+1 𝑒3𝑛/𝛾

]︃
≤ 𝛿.

Proof. Let 𝑁 = ⌈2𝛾⌉. Consider any 𝑖 ∈ [𝑛]. Choose 𝑎(𝑖)1 < . . . < 𝑎
(𝑖)
𝑁−1, such that

for 𝐼(𝑖)1 = (−∞, 𝑎(𝑖)1 ), 𝐼
(𝑖)
2 = [𝑎

(𝑖)
1 , 𝑎

(𝑖)
2 ), . . . , 𝐼

(𝑖)
𝑁 = [𝑎

(𝑖)
𝑁−1,∞) we have:

Pr[𝑐1 ∈ 𝐼(𝑖)𝑗 ] =
1

𝑁
∀𝑗 ∈ [𝑁 ].

Observe that by the bound on the probability density, we have 𝑎(𝑖)𝑗 − 𝑎
(𝑖)
𝑗−1 ≥

1
𝑁

for any 𝑗. Now define 𝜂 : R𝑚 → [𝑁 ]𝑛 such that (𝐴T
𝑖 𝑢) ∈ 𝐼

(𝑖)
𝜂(𝑢)𝑖

for all 𝑖 ∈ [𝑛]. Let
𝑆 = {𝜂(𝑢) : 𝑢 ∈ R𝑛}. In the subspace {𝐴𝑦 : 𝑦 ∈ R𝑚} of dimension at most𝑚, each
element of 𝑆 corresponds to a cell bounded by hyperplanes of the form 𝐴T

𝑖 𝑢 = 𝑎
(𝑖)
𝑗
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for some 𝑖 ∈ [𝑛] and some 𝑗 ∈ [𝑁 ]. It is well-known that for any hyperplane
arrangement in an𝑚-dimensional space that consists of at most 𝑛 ·𝑁 hyperplanes,
there are at most

∑︀𝑚
𝑖=0

(︀
𝑛𝑁
𝑚

)︀
≤ (𝑛𝑁)𝑚+1 cells. Hence, |𝑆| ≤ (𝑛𝑁)𝑚+1.

Take an arbitrary 𝑦 ∈ 𝑆. We will now bound
∏︀𝑛

𝑖=1

(︁
1 + 𝑒−𝛾|𝐴T

𝑖𝑢−𝑐𝑖|
)︁
simulta-

neously for all 𝑢 ∈ 𝜂−1(𝑦). Observe that:

E
[︂

max
𝑢∈𝜂−1(𝑦)

(︁
𝑒−𝛾|𝐴T

𝑖𝑢−𝑐𝑖|
)︁]︂
≤ Pr[𝑐𝑖 ∈ 𝐼(𝑖)𝑦𝑖 ] +

𝑁∑︁
𝑗=𝑦𝑖+1

𝑒𝛾(𝑎
(𝑖)
𝑦𝑖

−𝑎
(𝑖)
𝑗−1) Pr[𝑐𝑖 ∈ 𝐼(𝑖)𝑗 ]

+

𝑦𝑖−1∑︁
𝑗=1

𝑒
𝛾(𝑎

(𝑖)
𝑗 −𝑎

(𝑖)
𝑦𝑖−1) Pr[𝑐𝑖 ∈ 𝐼(𝑖)𝑗 ]

=
1

𝑁
+

1

𝑁

𝑁∑︁
𝑗=𝑦𝑖+1

𝑒𝛾(𝑎
(𝑖)
𝑦𝑖

−𝑎
(𝑖)
𝑗−1) +

1

𝑁

𝑦𝑖−1∑︁
𝑗=1

𝑒
𝛾(𝑎

(𝑖)
𝑗 −𝑎

(𝑖)
𝑦𝑖−1)

≤ 1

𝑁
+

2

𝑁

∞∑︁
𝑗=0

𝑒−𝑗𝛾/𝑁 =
1

𝑁
(1 +

2

1− 𝑒−𝛾/𝑁
) ≤ 5

𝑁
.

This implies that:

E

[︃
max

𝑢∈𝜂−1(𝑦)

𝑛∏︁
𝑖=1

(︁
1 + 𝑒−𝛾|𝐴T

𝑖𝑢−𝑐𝑖|
)︁]︃
≤

𝑛∏︁
𝑖=1

E
[︂

max
𝑢∈𝜂−1(𝑦)

(︁
1 + 𝑒−𝛾|𝐴T

𝑖𝑢−𝑐𝑖|
)︁]︂

≤
(︂
1 +

5

𝑁

)︂𝑛

≤ exp(5𝑛/𝑁) ≤ exp(3𝑛/𝛾).

By the Markov bound we have:

Pr[ max
𝑢∈𝜂−1(𝑦)

𝑛∏︁
𝑖=1

(︁
1 + 𝑒−𝛾|𝐴T

𝑖𝑢−𝑐𝑖|
)︁
≥ 1

𝛿′
exp(3𝑛/𝛾)] ≤ 𝛿′

By taking the union bound over all 𝑦 ∈ 𝑆 we get:

Pr

[︃
max
𝑢

𝑛∏︁
𝑖=1

(︁
1 + 𝑒−𝛾|𝐴T

𝑖𝑢−𝑐𝑖|
)︁
≥ 1

𝛿′
exp(3𝑛/𝛾)

]︃
≤ |𝑆|𝛿′ ≤ (𝑛𝑁)𝑚+1𝛿′

≤ (3𝑛𝛾)𝑚+1𝛿′.

Setting 𝛿′ = 𝛿
(︁

1
3𝑛𝛾

)︁𝑚+1
we obtain the lemma.

Now we will use the previous lemma to bound the size of the knapsack.



3.2. Bounding the tree size 41

Lemma 3.2.4. Let𝐴 ∈ R𝑚×𝑛, 𝛾 ≥ 0. Let 𝑐1, . . . , 𝑐𝑛 be independent random variables,
each having probability density at most 1. Let 𝑃 ⊆ [0, 1]𝑛. Now:

Pr
[︂
max
𝑢∈R𝑚

|𝐾(𝐴, 𝑐, 𝑢, 𝑔)| ≥ 𝛿−1(3𝑛2)𝑚+1 exp(
√︀
12𝑛𝑔 + 4)

]︂
≤ 𝛿.

Proof. For any 𝛾 ≥ 0, we first note that

max
𝑢∈R𝑚

|𝐾(𝐴, 𝑐, 𝑢, 𝑔)| ≤
∑︁

𝑥∈{0,1}𝑛
𝑒𝛾(𝑔−

∑︀𝑛
𝑖=1 𝑥𝑖|(𝐴T𝑢−𝑐)𝑖|) = 𝑒𝛾𝑔

𝑛∏︁
𝑖=1

(1+𝑒−𝛾|(𝐴T𝑢−𝑐)𝑖|).

(3.7)
To see this, note that each term 𝑒𝛾(𝑔−

∑︀𝑛
𝑖=1 𝑥𝑖|(𝐴T𝑢−𝑐)𝑖|) with 𝑥 ∈ 𝐾 contributes

at least 1. By Lemma 3.2.3, we have:

Pr
[︂
max
𝑢∈R𝑚

|𝐾(𝐴, 𝑐, 𝑢, 𝑔)| ≥ 𝛿−1 (3𝑛𝛾)𝑚+1 𝑒3𝑛/𝛾+𝛾𝑔

]︂
≤ 𝛿. (3.8)

Setting 𝛾 = min(𝑛,
√︁

3𝑛
𝑔 ), we conclude that

Pr
[︂
max
𝑢∈R𝑚

|𝐾(𝐴, 𝑐, 𝑢, 𝑔)| ≥ 𝛿−1(3𝑛2)𝑚+1 exp(
√︀
12𝑛𝑔 + 4)

]︂
≤ 𝛿.

The previous bound allows us to prove the main result of this section.

Theorem 3.1.3. Let𝐴 ∈ R𝑚×𝑛, 𝑏 be random variables. Let 𝑐1, . . . , 𝑐𝑛 be independent
random variables, each having probability density at most 1. Let 𝑃 ⊆ [0, 1]𝑛 be an
integral polytope. Then, for 𝑔 ≥ 0, 𝛿 ∈ (0, 1), with probability at least

1− Pr
𝐴,𝑏,𝑐

[IPGAP ≥ 𝑔]− 𝛿,

the branch-and-bound algorithm equipped with the best-first search rule applied to the
ILP

max 𝑐T𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ∈ 𝑃 ∩ {0, 1}𝑛.

produces a tree of size at most

𝑛𝑂(𝑚) exp(
√
12𝑛𝑔)

𝛿
(3.2)
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Proof. Suppose that IPGAP ≤ 𝑔, and call this event 𝐸1. Let 𝑆 = {𝑥 ∈ {0, 1}𝑛 :∑︀𝑛
𝑖=1 𝑥𝑖|(𝐴T𝑢* − 𝑐)𝑖| ≤ 𝑔}. Let 𝐸2 be the event that

|𝑆| ≤ 𝛿−1(3𝑛2)𝑚+1 exp(
√︀
12𝑛𝑔 + 4).

If 𝐸2 occurs, by Theorem 3.2.1 the size of the branch-and-bound tree is at most
1 + 2𝑛𝛿−1(3𝑛2)𝑚+1 exp(

√
12𝑛𝑔 + 4) ≤ 𝑛𝑂(𝑚) exp(

√
12𝑛𝑔). By Lemma 3.2.4 and

the union bound this occurs with probability at least 1− Pr[¬𝐸1]− 𝛿, proving the
lemma.

Bounds for the generalized assignment problem To highlight the generality
of the above results, we will now show their applicability to ILPs for which the
polytope 𝑃 is not equal to [0, 1]𝑛. We will consider the generalized assignment
problem, as studied in [DF92]. Instances of this problem are of the form:

max
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

s.t.
𝑛∑︁

𝑖=1

𝑎𝑖𝑗𝑥𝑖𝑗 ≤ 𝛽𝑖𝑛 ∀𝑗 ∈ [𝑚]

𝑚∑︁
𝑗=1

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ [𝑛]

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚].

In [DF92] it is shown that the integrality gap of such a problem with 𝑐𝑖𝑗 and 𝑎𝑖𝑗
independently and uniformly distributed on [0, 1] is 𝑂(log(𝑛)2/𝑛) with probability
at least 1/3, when𝑚 is fixed and 𝛽𝑖 ≥ 2

𝑚(𝑚+1) . Note that the above problem can
be rewritten in the form of (3.3) where the number of variables is equal to 𝑛𝑚 in
the above formulation. For convenience, we will keep indexing 𝑥 by pairs from
[𝑛]× [𝑚]. The corresponding constraint matrix 𝐴′ is defined as 𝐴′

(𝑖,𝑗),𝑘 = 𝑎𝑖𝑗1𝑗=𝑘.
In that case 𝑃 is defined as 𝑃 = {𝑥 :

∑︀𝑚
𝑗=1 𝑥𝑖𝑗 = 1 ∀𝑖 ∈ [𝑛];𝑥 ≥ 0}. Note that this

polytope is indeed integral. By applying Theorem 3.1.3 with 𝑔 = 𝑂(log(𝑛)2/𝑛) we
see that the branch-and-bound tree will have size at most 𝑛𝑂(1) with probability at
least 1/2 for fixed𝑚.
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3.3 Proving bounds on the IPGAP

Now, let us prove the bounds on the integrality gap for the centered and packing IPs.
We begin with by proving some properties of the linear programs and their duals
that we study in this work in Section 3.3. Then in Section 3.3 we will prove bounds
on the integrality gap for centered IPs. In Section 3.3 we will prove bounds on the
integrality gap for packing IPs.

Linear programs and their duals

We will examine the integrality gap with respect to the LP relaxation. Recall that it
is defined as:

valLP := max
𝑥

valLP(𝑥) = 𝑐T𝑥

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ [0, 1]𝑛, (Primal LP)

We can express the dual LP in the following convenient form:

val*LP := min
𝑢

val*LP(𝑢) = 𝑏T𝑢+
⃦⃦⃦(︀
𝑐−𝐴T𝑢

)︀+⃦⃦⃦
1

s.t. 𝑢 ≥ 0. (Dual LP)

By strong duality, assuming (Primal LP) is bounded and feasible, we have that valLP =
val*LP.

For any primal solution 𝑥 and dual solution 𝑢 to the above pair of programs, we
will make heavy use of the standard formula for the primal-dual gap:

val*LP(𝑢)− valLP(𝑥) = 𝑏T𝑢+
⃦⃦⃦(︀
𝑐−𝐴T𝑢

)︀+⃦⃦⃦
1
− 𝑐T𝑥

= (𝑏−𝐴𝑥)T𝑢+
(︀
⟨𝑥, (𝐴T𝑢− 𝑐)+⟩+ ⟨1𝑛 − 𝑥, (𝑐−𝐴T𝑢)+⟩

)︀
.

(Gap Formula)

In the sequel, we will let 𝑥* denote the optimal solution to Primal LP and
𝑢* denote the optimal solution to Dual LP. For all the LP distributions we work
with, the objective 𝑐 is continuously distributed (either Gaussian or exponentially
distributed), from which it can be verified that conditioned on the feasibility of
Primal LP (which depends only on 𝐴 and 𝑏) both 𝑥* and 𝑢* are uniquely defined
almost surely. Moreover, if 𝑖 ∈ [𝑛], we shall use 𝐴𝑖 to refer to the 𝑖th column of 𝐴
and extend this definition to other matrices as well.

Once the optimal solution is found for Primal LP, one can round its fractional
coordinates to an integral vector. While the rounded vector may not be a feasible
solution, we shall use the fact that, as long as the 𝐴𝑖 are sufficiently bounded, it
cannot be very far from a feasible solution.
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Lemma 3.3.1. There exists 𝑥′ ∈ {0, 1}𝑛, such that,

‖𝐴(𝑥* − 𝑥′)‖ ≤
√
𝑚 ·max

𝑖∈[𝑛]
‖𝐴𝑖‖.

Proof. Let 𝑌 be the random variable in {0, 1}𝑛 with independent components such
that E(𝑌 ) = 𝑥*. Note that this implies that Var(𝑌𝑖) ≤ 1/4 for all 𝑖 and Var(𝑌𝑖) = 0
for 𝑥*𝑖 ∈ {0, 1}. Since 𝑥* is a unique optimal solution it has at most 𝑚 fractional
components. So:

E [‖𝐴(𝑦 − 𝑌 )‖2]2 ≤ E
[︀
‖𝐴(𝑦 − 𝑌 )‖22

]︀
=

𝑛∑︁
𝑖=1

‖𝐴𝑖‖22 Var(𝑌𝑖)

≤
𝑛∑︁

𝑖=1

𝐶2 Var(𝑌𝑖) ≤
𝐶2 ·𝑚

4
.

So E(‖𝐴(𝑦 − 𝑌 )‖2) ≤ 𝐶
√
𝑚/2, which directly implies the existence of a value

𝑦′ ∈ {0, 1}𝑛 with ‖𝐴(𝑦 − 𝑦′)‖2 ≤ 𝐶
√
𝑚/2.

For the optimal solution 𝑥*, define,

𝑁0 := {𝑖 ∈ [𝑛]|𝑥*𝑖 = 0}, and 𝑁1 := {𝑖 ∈ [𝑛]|𝑥*𝑖 = 1}. (3.9)

Let𝑊 be the matrix with columns𝑊𝑖 =
[︀
𝑐𝑖 𝐴𝑖

]︀T. The distribution of the columns
of 𝑊 with indices in 𝑁0 plays an important role in the proofs of Theorems 3.1.1
and 3.1.2. The following lemma essentially says that conditioning on the set 𝑁0

and on the values of the non-0-columns preserves the mutual independence of the
0-columns. The conditional distribution of the the 0-columns is also identified.

Lemma 3.3.2. Let 𝑁 ⊆ [𝑛]. Conditional on 𝑁0 = 𝑁 and on the values of sub-
matrix 𝑊[𝑛]∖𝑁 , 𝑥* and 𝑢* are almost surely well defined. Moreover, if 𝑖 ∈ 𝑁 , then
𝑊𝑖 is independent from𝑊𝑁∖{𝑖} and the conditional law𝑊𝑖 | 𝑖 ∈ 𝑁 is the same as
𝑊𝑖 | 𝑢*T𝐴𝑖 − 𝑐𝑖 > 0.

Proof. Knowing 𝑁 , we solve the following program to obtain its primal and dual
optimal feasible solutions 𝑥̄ and 𝑢̄.

max 𝑐T𝑥

s.t.
∑︁

𝑖∈[𝑛]∖𝑁

𝑥𝑖𝑎𝑗𝑖 ≤ 𝑏𝑗 ∀𝑗 ∈ [𝑚]

𝑥𝑖 = 0 ∀𝑖 ∈ 𝑁
𝑥 ∈ [0, 1]𝑛.
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This does not require knowledge of𝑊𝑁 ′
0
, and the optimal feasible primal and dual

solutions are unique almost surely.
If 𝑁0 = 𝑁 , then 𝑥̄ = 𝑥* and 𝑢̄ = 𝑢*. Since these solutions satisfy complemen-

tary slackness, this is equivalent to the following system of equations.

(1− 𝑥̄𝑖)(𝑐𝑖 −
𝑚∑︁
𝑗=1

𝑢̄𝑖𝑎𝑗𝑖)
+ = 0, ∀𝑖 ∈ [𝑛]. (3.10)

𝑥̄𝑖(

𝑚∑︁
𝑗=1

𝑢̄𝑖𝑎𝑗𝑖 − 𝑐𝑖)+ = 0, ∀𝑖 ∈ [𝑛]. (3.11)

𝑢̄𝑗(𝑏−𝐴𝑥̄)𝑗 = 0, ∀𝑗 ∈ [𝑚]. (3.12)

Note that for 𝑖 ∈ 𝑁0, Eqs. (3.11) and (3.12) are trivially satisfied. By definition,
the distribution of𝑊𝑖 := (𝑐𝑖, 𝑎1𝑖, . . . , 𝑎𝑚𝑖) conditioned on Eq. (3.10) for 𝑥̄𝑖 = 0 has
the same law as 𝑌 𝑢̄. Note that each of these conditions depends on only one 𝑖 ∈ 𝑁 ′

0,
so all columns of𝑊𝑁 ′

0
are independent.

We conditioned only on 𝑁0 = 𝑁 ′
0, which has non-zero probability, and we

have shown that for every possible realization of𝑊[𝑛]∖𝑁 ′
0
, the columns of𝑊𝑁 ′

0
are

independently distributed as 𝑌 𝑢* , which proves the lemma.

The gap bound for centered IPs

In this subsection we will prove Theorem 3.1.1. In the setting of Theorem 3.1.1,
the objective 𝑐 ∈ R𝑚 has independent standard Gaussian entries, and the 𝑚 × 𝑛
constraint matrix 𝐴 has independent columns which are distributed as either one of
the following two possibilities:

• (LI) Isotropic logconcave distributions with support bounded by 𝑂(
√
ln𝑛+√

𝑚).

• (DSU) Vectors with independent entries, uniform on a discrete symmetric
interval of size 𝑘 ≥ 3.

Here we list some of the moments of (DSU) for reference.

Proposition 3.3.3 (Discrete Symmetric Moments). For 𝑘 ≥ 1, let 𝑈 be uni-
formly distributed on {0,±1/𝑘, . . . ,±1}. Then, E[𝑈2] = 𝑘+1

3𝑘 ≥ 1/3, E[𝑈4] =
(𝑘+1)(3𝑘2+3𝑘−1)

15𝑘3
and E[𝑈4]/E[𝑈2]2 = 9(3𝑘2+3𝑘−1)

15(𝑘+1)𝑘 ≤ 2.

To simplify the notation in the discrete case, we divide the constraint matrix 𝐴
and the right hand side 𝑏 by 𝑘 (which clearly does not restrict generality). Thus, in
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the discrete case (DSU), we will assume that entries of𝐴 are uniformly distributed in
{0,±1/𝑘, . . . ,±1} and that the right hand side 𝑏 ∈ Z𝑚/𝑘 satisfies ‖𝑏−‖2 ≤ 𝑂(𝑛).
In this way, the discrete case is usefully viewed as a discrete approximation of
the continuous setting where the entries of 𝐴 are uniformly distributed in [−1, 1]
(note that the covariance matrix of each column here is 𝐼𝑚/3, and thus essentially
isotropic).

With the above setup, our goal is to show that IPGAP = 𝑂(poly(𝑚)(ln𝑛)2
𝑛 ) with

probability 1− 𝑛− poly(𝑚).

Properties of the optimal solutions

To obtain the gap bound, we will need to show |𝑁0| = Ω(𝑛) and that 𝑢*, the optimal
dual solution, has small norm. This is given by the following lemma, which is a
technical adaptation of [BDHT22, Lemma 8].

Lemma 3.3.4. For𝐴 ∈ R𝑚×𝑛, 𝑛 ≥ 105𝑚, distributed as (LI) or (DSU), 𝑐 ∼ 𝒩 (0, 𝐼𝑚),
‖𝑏−‖ ≤ 𝑛

12
√
2
with probability at least 1−𝑒−Ω(𝑛), we have ‖𝑢*‖ ≤ 32 and |𝑁0| ≥ 𝑛

105
.

To prove this, we need two key lemmas. The first lemma will provide a good
approximation for the value of any dual solution.

Lemma 3.3.5. Let𝑊 T := (𝑐, 𝐴T) where 𝑐 ∼ 𝒩 (0, 𝐼𝑛) and 𝐴 ∈ R𝑚×𝑛 is distributed
as (LI) or (DSU). Then, for 𝑛 = Ω(𝑚), we have that

Pr
[︂
∃𝑣 ∈ S𝑚 : ‖(𝑣T𝑊 )+‖1 /∈

[︂
𝑛

12
,
3𝑛

4

]︂]︂
≤ 𝑒−Ω(𝑛).

Proof. Fix 𝑣 ∈ S𝑚 and consider Pr
[︀
‖(𝑣T𝑊 )+‖1 /∈ [𝑛8 ,

5𝑛
8 ]
]︀
. Let 𝑖 ∈ [𝑛], we first

claim
1

6
≤ E

[︀
(𝑣T𝑊 )+𝑖

]︀
≤ 1

2
. (3.13)

To see the right inequality, by Proposition 2.3.1, E
[︀
(𝑣T𝑊 )+𝑖

]︀
= 1

2 E
[︀
|𝑣T𝑊 |+𝑖

]︀
. Now

observe that every entry has variance at most 1, so with Jensen’s inequality

E
[︀
(𝑣T𝑊 )+𝑖

]︀
=

1

2
E
[︀
|𝑣T𝑊 |+𝑖

]︀
≤ 1

2

√︁
Var(|𝑣T𝑊 |+𝑖 ) ≤

1

2
.

For the left inequality, if the columns of𝑊 are isotropic log-concave (recall that
the standard Gaussian is also log-concave) Lemma 2.3.10 to get,

1

6
≤ 1

2
√
𝑒
≤ 1

2
E
[︀
|𝑣T𝑊 |+𝑖

]︀
= E

[︀
(𝑣T𝑊 )+𝑖

]︀
.
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If the columns of𝑊 are discrete, by Proposition 3.3.3 every entry satisfies, Var (𝑊𝑖𝑗) ≥
1
3 . Hence, Var

(︀
(𝑣T𝑊 )𝑖

)︀
≥ 1

3 . Moreover, Proposition 3.3.3 also implies, E[𝑊 4
𝑗𝑖] ≤

3E[𝑊 2
𝑗𝑖]

2. So, by the Khintchine inequality in Lemma 2.3.13,

1

6
≤
√︀

Var ((𝑣T𝑊 )𝑖)

2
√
3

≤ 1

2
E
[︀
|𝑣T𝑊 |+𝑖

]︀
= E

[︀
(𝑣T𝑊 )+𝑖

]︀
.

Now, having established (3.13), we can bound Pr
[︀
‖(𝑣T𝑊 )+‖1 /∈ [𝑛8 ,

5𝑛
8 ]
]︀
. In the

log-concave case, Lemma 2.3.12 immediately gives,

Pr
[︂
‖(𝑣T𝑊 )+‖1 /∈ [

𝑛

8
,
5𝑛

8
]

]︂
≤ 𝑒−Ω(𝑛).

In the discrete case, by Lemma 2.3.4, every entry of 𝑊 is 1-sub-Gaussian, and
Lemma 2.3.5 shows that (𝑣T𝑊 )+𝑖 − E

[︀
(𝑣T𝑊 )+𝑖

]︀
is
√
2-sub-Gaussian. Hence, by

summing the coordinates we see that ‖(𝑣T𝑊 )+‖1 − E
[︀
‖(𝑣T𝑊 )+‖1

]︀
is
√
2𝑛-sub-

Gaussian. Applying (2.4), we can thus conclude a corresponding probability bound,
as in the previous display.

We now turn to consider the entire sphere. Fix 𝜀 to be a small constant and let
𝑁𝜀 ⊆ S𝑚−1 be an 𝜀-net. It is standard to show that one may take |𝑁𝜀| ≤

(︀
3
𝜀

)︀𝑚.
Hence, by applying a union bound,

Pr
(︂
∃𝑣 ∈ 𝑁𝜀 : ‖(𝑣T𝑊 )+‖1 /∈

[︂
𝑛

8
,
5𝑛

8

]︂)︂
≤
(︂
3

𝜀

)︂𝑚

𝑒−Ω(𝑛) ≤ 𝑒−Ω(𝑛),

where the last inequality holds when 𝑛 = Ω(𝑚).
Let us denote by 𝐸 the event considered above and for 𝑢 ∈ S𝑚−1 let 𝑢̃ ∈ 𝑁𝜀,

with ‖𝑢− 𝑢̃‖2 ≤ 𝜀. Under 𝐸, we have,

max
𝑢∈S𝑚−1

‖(𝑢T𝑊 )+‖1 ≤ min
𝑣∈𝑁𝜀

‖(𝑣T𝑊 )+‖1 + ‖((𝑢− 𝑢̃)T𝑊 )+‖1

≤ 5

8
𝑛+ 𝜀 max

𝑢∈S𝑚−1
‖(𝑢T𝑊 )+‖1,

which is equivalent to,

max
𝑢∈S𝑚−1

‖(𝑢T𝑊 )+‖1 ≤
5

8(1− 𝜀)
𝑛.
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On the other hand,

min
𝑢∈S𝑚−1

‖(𝑢T𝑊 )+‖1 ≥ min
𝑣∈𝑁𝜀

‖(𝑣T𝑊 )+‖1 − ‖((𝑢− 𝑢̃)T𝑊 )−‖1

≥ 𝑛

8
− 𝜀 max

𝑢∈S𝑚−1
‖(𝑢T𝑊 )+‖1

≥ 𝑛

8
− 𝜀 5

8(1− 𝜀)
𝑛.

Choose now 𝜀 = 5
212 to conclude,

𝑛

12
≤ min

𝑢∈S𝑚−1
‖(𝑢T𝑊 )+‖1 ≤ max

𝑢∈S𝑚−1
‖(𝑢T𝑊 )+‖1 ≤

3𝑛

4
.

The second lemma will imply that any LP solution with large support must have
small objective value.

Lemma 3.3.6. Let 𝑐 ∼ 𝒩 (0, 𝐼𝑛). Then, for every 𝛼 ∈ [0, 2
√︀

ln(2)],

Pr
[︂

max
𝑥∈{0,1}𝑛, ‖𝑥‖1≥𝛽𝑛

𝑐T𝑥 ≥ 𝛼𝑛
]︂
≤ 𝑒

−𝛼2𝑛
2 ,

where 𝛽 ∈ [1/2, 1] is such that𝐻(𝛽) ≤ 𝛼2

4 , where𝐻(𝑝) = −𝑝 ln 𝑝−(1−𝑝) ln(1−𝑝),
𝑝 ∈ [0, 1], is base 𝑒 entropy.

Proof. For any 𝑥 ∈ {0, 1}𝑛, 𝑐T𝑥 ∼ 𝒩 (0, ‖𝑥‖22) and thus, by (2.4),

Pr
(︀
𝑐T𝑥 ≥ 𝛼𝑛

)︀
≤ 𝑒

− 𝛼2𝑛2

2‖𝑥‖22 ≤ 𝑒−
𝛼2𝑛
2 .

We now apply a union bound,

Pr
(︂

max
𝑥∈{0,1}𝑛, ‖𝑥‖1≥𝛽𝑛

𝑐T𝑥 ≥ 𝛼𝑛
)︂
≤ |{𝑥 ∈ {0, 1}𝑛, ‖𝑥‖1 ≥ 𝛽𝑛}| 𝑒−

𝛼2𝑛
2

≤ 𝑒𝐻(𝛽)𝑛𝑒−
𝛼2𝑛
2 ≤ 𝑒−

𝛼2𝑛
4 .

We now have the ingredients to prove the main lemma.



3.3. Proving bounds on the IPGAP 49

Proof of Lemma 3.3.4. For the proof, we will consider the extended matrix𝑊 T :=
(𝑐, 𝐴T). We begin by showing that, for the optimal solution, 𝑐T𝑥* is large. Let
𝑢 ≥ 0 be any dual solution. Then, under the complement of the event defined in
Lemma 3.3.5 for𝑊 , using (Dual LP),

val*LP(𝑢) = 𝑏T𝑢+ ‖(𝑐−𝐴T𝑢)+‖1 ≥ −‖𝑏−‖‖𝑢‖+ ‖((1,−𝑢)T𝑊 )+‖1

≥ −‖𝑏−‖‖𝑢‖+
√︀
1 + ‖𝑢‖2 𝑛

12
≥ 𝑛

12

(︂
−‖𝑢‖√

2
+
√︀
1 + ‖𝑢‖2

)︂
≥ 𝑛

12
√
2
.

(3.14)

The second inequality is the lower bound in Lemma 3.3.5 and the last inequality
follows since the function

√
1 + 𝑡2 − 𝑡√

2
is minimized at 𝑡 = 1. A lower bound on

𝑐T𝑥* follows by noting,

𝑐T𝑥* = valLP(𝑥*) = val*LP(𝑢*).

We now prove that ‖𝑢*‖ cannot be too large. Again, under the complement of
the event in Lemma 3.3.5, but using the upper bound this time,

3𝑛

4
≥ ‖((1, 0)T𝑊 )+‖1 = ‖𝑐+‖1 = val*LP(0) ≥ val*LP(𝑢*)

≥ 𝑛

12

(︂
−‖𝑢

*‖√
2

+
√︀

1 + ‖𝑢*‖2
)︂
≥ 𝑛

12

(︂
1− 1√

2

)︂
‖𝑢*‖,

where in the third inequality we have applied (3.14) to 𝑣*. Thus, rearranging we
get ‖𝑢*‖2 ≤ 9

√
2√

2−1
≤ 32. Finally, we show that the optimal solution has many 0

coordinates. Since 𝑥* has at most𝑚 fractional coordinates,

|{𝑖 ∈ [𝑛] | 𝑥*𝑖 = 0}| ≥ 𝑛−𝑚− |{𝑖 ∈ [𝑛] | 𝑥*𝑖 = 1}| .

Since, by assumption we know that 𝑛 ≥ 105𝑚, to finish the proof it will suffice to
show that we have |{𝑖 ∈ [𝑛] | 𝑥*𝑖 = 1}| ≤

(︀
1− 2

105

)︀
𝑛. Define 𝑥̄ by,

𝑥̄𝑖 :=

⎧⎪⎨⎪⎩
𝑥*𝑖 if 𝑥*𝑖 ∈ {0, 1}
1 if 𝑥*𝑖 /∈ {0, 1} and 𝑐𝑖 ≥ 0

0 if 𝑥*𝑖 /∈ {0, 1} and 𝑐𝑖 < 0

.

Letting 𝛼 = 1
12

√
2
and 𝛽 = 1− 2

105
, a calculation reveals that𝐻(𝛽) ≤ 1

4𝛼2 . By (3.14),
we have

𝑐T𝑥̄ ≥ 𝑐T𝑥* ≥ 𝛼𝑛,
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and by conditioning on the complement of the event in Lemma 3.3.6 with 𝛽 and 𝛼
as above,

𝛽𝑛 ≥ |{𝑖 ∈ [𝑛] | 𝑥̄𝑖 = 1}| ≥ |{𝑖 ∈ [𝑛] | 𝑥*𝑖 = 1}| .

The proof concludes by applying the union bound to the events in Lemmas 3.3.6 and
3.3.5.

Conditional distribution of 0-columns of IP

Let 𝐵 be a random variable with the same distribution as the columns of 𝐴. By
Lemma 4.4.1, 𝐵 satisfies the anti-concentration inequality (AC) with constant 𝜅 ≤
1. Define 𝐶 :=

√
150‖𝑢*‖√

𝜅
. We first show that the anti-concentration property is

unaffected if we condition 𝐵 on a strip of width 2𝐶 .

Lemma 3.3.7. Let 𝐵′ have the law of 𝐵, conditioned on |𝑢*T𝐵| ≤ 𝐶 . Then,

1. Pr[|𝑢*T𝐵| ≤ 𝐶] ≥ 1− 𝜅
150 .

2. We have 1
10𝐼𝑚 4 Cov(𝐵′) 4 2𝐼𝑚.

3. If 𝐵 is (DSU), then 𝐵′ is symmetric and anti-concentrated with parameter 𝜅/2.

4. If 𝐵 is (LI), 𝐵′ is logconcave.

Proof. Let 𝐸 = {𝑎 ∈ R𝑚 : |𝑢*T𝑎| ≤ 𝐶}. From Chebyshev’s inequality, and since
distributions we consider satisfy Cov(𝐵) ⪯ 𝐼𝑚,

Pr (𝐵 ∈ 𝐸) ≥ 1−
E
[︀
(𝑢*T𝐵)2

]︀
𝐶2

≥ 1− ‖𝑢
*‖2

𝐶2
≥ 1− 𝜅

150
,

which is the first claim.
If 𝑤 ∈ R𝑚, then

E
[︀
|𝑤T𝐵′|2

]︀
=

E
[︀
|𝑤T𝐵|21𝐸

]︀
Pr (𝐵 ∈ 𝐸)

≤ 2E
[︀
|𝑤T𝐵′|2

]︀
≤ 2‖𝑤‖2.

In the (DSU) case, to lower bound Cov(𝐵′), we note that by Proposition 3.3.3,
E[𝑊 4

𝑗𝑖] ≤ 3E[𝑊 2
𝑗𝑖]

2. As a consequence, Lemma 2.3.13 implies
√︀
E[|𝑤T𝐵|4] ≤√

3E[|𝑤T𝐵|2]. By the Cauchy-Schwarz inequality,

E[|𝑤T𝐵 · 1𝐵 /∈𝐸 |2] ≤
√︁

E[|𝑤T𝐵|4] · E[14𝐵 /∈𝐸 ]

≤
√︀

3 Pr[𝐵 /∈ 𝐸]E[|𝑤T𝐵|2] ≤
√︂

𝜅

50
‖𝑤‖2.
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By Proposition 3.3.3 we have E[|𝑤T𝐵|2] ≥ 1
3‖𝑤‖

2. So:

E[|𝑤T𝐵′|2] = E[|𝑤T𝐵|2]− E[|𝑤T𝐵|2 · 1𝐵 /∈𝐸 ]

Pr[𝐵 ∈ 𝐸]

≥
1
3‖𝑤‖

2 −
√︀

𝜅
50‖𝑤‖

2·
1− 𝜅

50

≥ 1

10
‖𝑤‖2,

proving the second claim for the (DSU) case.
In the (LI) case, ⟨𝑤,𝐵⟩ is logconcave. By Lemma 2.3.7, 𝑓⟨𝐵,𝑣⟩ ≤ 1√︀

Var ⟨𝐵,𝑣⟩
= 1.

So, 𝑓⟨𝑣,𝐵′⟩ ≤ 1
1−1/150𝑓⟨𝐵,𝑣⟩ =

150
149 . Now, Lemma 2.3.2 implies that Var(⟨𝐵′′, 𝑣⟩) ≥

1
13 .

Now, if 𝐵 is (DSU), it is symmetric, and because conditioning on a symmetric
set preserves symmetry, so is 𝐵′. Consequently, in this case, E[𝐵′] = 0. Now set
𝜎′ :=

√︀
‖Cov(𝐵′)‖op ≤

√
2. For the third claim, let 𝐼(𝜃) = {𝑎 ∈ R𝑚 : 𝑑(𝜃T𝑎,Z) ≥

𝜅
2 min (1, 𝜎′‖𝜃‖∞)}. Choose an arbitrary 𝜈 ∈ R𝑛. By the symmetry of 𝐵′ we have:

Pr
[︀
𝐵′ ∈ 𝐼(𝜃) | ⟨𝐵, 𝜈⟩ ≤ 0

]︀
=

Pr [𝐵 ∈ 𝐼(𝜃) ∩ 𝐸 | ⟨𝐵, 𝜈⟩ ≤ 0]

Pr[𝐵 ∈ 𝐸 | ⟨𝐵, 𝜈⟩ ≤ 0]

≥ Pr [𝐵 ∈ 𝐼(𝜃) | ⟨𝐵, 𝜈⟩ ≤ 0]− 2 Pr [𝐵 /∈ 𝐸] ≥ 𝜅

2
.

The last inequality follows from the anti-concentration equality (AC),

Pr [𝐵 ∈ 𝐼(𝜃) | ⟨𝐵, 𝜈⟩ ≤ 0] ≥ Pr
[︁
𝑑(𝜃T𝐵,Z) ≥ 𝜅

2
min

(︀
1, 𝜎′‖𝜃‖∞

)︀
| ⟨𝐵, 𝜈⟩ ≤ 0

]︁
≥ 𝜅.

This shows anti-concentration when 𝐵 is (DSU).
If 𝐵 is (LI), then so is 𝐵′ because it is a restriction to a convex set, proving the

last claim.

In the proof of Theorem 3.1.1, we work with the columns of𝐴 that have negative
reduced cost. We show that we can convert their distribution into the distribution
of 𝐵′, by using rejection sampling.

Lemma 3.3.8. Let 𝐵 = 𝐴𝑖 and let 𝐵′, 𝑐′ have Law(𝐵′, 𝑐′𝑖) = Law(𝐵, 𝑐𝑖 | 𝑢*T𝐵 −
𝑐𝑖 ≥ 0). When 𝛿 ≤ 𝐶 , there exist a rejection sampling procedure 𝜓 such that:

• Law(𝐵′ | 𝜓(𝐵′, 𝑐′𝑖) = accept) = Law(𝐵 | |𝑢*T𝐴𝑖| ≤ 𝐶).

• Pr[𝜓(𝐵′, 𝑐′𝑖) = accept] ≥ 𝛿 exp
(︁
−104

𝜅

)︁
.
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Proof. Let 𝑐′′ and 𝐵′′ be independent random variables with 𝑐′′ ∼ Unif(0, 𝛿) and let
Law(𝐵′′) = Law(𝐵 | |𝑢*T𝐵| ≤ 𝐶). Now we will apply Lemma 2.3.15 to transform
(𝐵′, 𝑐′) into (𝐵′′, 𝑐′′) using rejection sampling. Observe that for any 𝐵̄ ∈ R𝑚 with
𝑢*T𝐵̄ − 𝑐 ∈ [0, 𝛿]:

𝑓(𝐵′′,𝑐′′)(𝐵̄, 𝑐)

𝑓(𝐵′,𝑐′𝑖)
(𝐵̄, 𝑐)

=
𝑓𝐵(𝐵̄)/ Pr[|𝑢*T𝐵| ≤ 𝐶]/𝛿

𝑓𝐵(𝐵̄)𝑓𝑐𝑖(𝑐)/ Pr[𝑢*T𝐵 − 𝑐 ≥ 0]
=

Pr[𝑢*T𝐵 − 𝑐 ≥ 0]

𝛿𝑓𝑐𝑖(𝑐) Pr[|𝑢*T𝐵| ≤ 𝐶]

≤
1− 𝜅

150

𝛿 exp(−1
2(𝐶 + 𝛿)2)/

√
2𝜋
≤ 3 exp(2𝐶2)

𝛿
.

For the last inequality we assumed that 𝛿 ≤ 𝐶 . By Lemma 2.3.15 we, using rejection
sampling we can turn (𝐵′, 𝑐′) into (𝐵′′, 𝑐′′) with success probability 𝛿

3 exp( 1
2
(𝐶+𝛿)2)

.

Since 𝐶 =
√
2‖𝑢*‖√

𝜅
, by Lemma 3.3.4 , the success probability is at least 𝛿

3 exp(2𝐶2)
≤

𝛿 exp
(︁
−104

𝜅

)︁
.

When the columns of𝐴 are continuously distributed, we have to be more careful,
because the distribution that we obtain from rejection sampling is not necessarily
symmetric. As a result, 𝐵 will not necessarily be mean-zero. We apply another step
of rejection sampling to handle this case.

Lemma 3.3.9. Let𝐵′ denote the random variable𝐵 | |𝑢*T𝐵| ≤ 𝐶 . If𝐵′ is logconcave,
then there exists a rejection sampling procedure 𝜓, such that Pr[𝜓(𝐵′) = accept] =
Ω(1), and such that the random variable 𝐵′′ which is defined to have Law(𝐵′′) =
Law(𝐵′|𝜓(𝐵′) = accept) satisfies:

1. E[𝐵′′] = 0.

2. Cov(𝐵′′) < 1
768𝐼𝑚.

3. The law of 𝐵′′ is an approximately symmetric distribution, in the sense of
Definition 4.3.1.

4. 𝐵′′ satisfies (AC) with an Ω(1) constant.

Proof. Let 𝜇′ := E[𝐵′]. By Hölder’s inequality, we have any unit vector 𝑣 ∈ R𝑚,

E
[︀
⟨𝐵′, 𝑣⟩

]︀
=

E[⟨𝐵, 𝑣⟩ · 1|𝑢*T𝐵|≤𝐶 ]

Pr[|𝑢*T𝐵| ≤ 𝐶]
= −

E[⟨𝐵, 𝑣⟩ · 1|𝑢*T𝐵|>𝐶 ]

Pr[|𝑢*T𝐵| ≤ 𝐶]

≤
√︀
E[⟨𝐵, 𝑣⟩2]

√︀
Pr[|⟨𝐵, 𝑢*⟩| > 𝐶]

Pr[|𝑢*T𝐵| ≤ 𝐶]
≤

√︁
1

150

1− 1/150
≤ 1

12
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where the second equality follows since 𝐵 is isotropic and from

E[⟨𝐵, 𝑣⟩ · 1|𝑢*T𝐵|≤𝐶 ] + E[⟨𝐵, 𝑣⟩ · 1|𝑢*T𝐵|>𝐶 ] = E[⟨𝐵, 𝑣⟩] = 0.

Recall 𝐶 ≥
√
150‖𝑢*‖. Hence, the concentration bound in [LV07, Lemma 5.7],

coupled with the fact that 𝐵 is isotropic, gives,

√︀
E[⟨𝐵, 𝑣⟩2]

√︀
Pr[|⟨𝐵, 𝑢*⟩| > 𝐶]

Pr[|𝑢*T𝐵| ≤ 𝐶]
≤

√︂
Pr
[︁
|⟨𝐵, 𝑢*

‖𝑢*‖⟩| >
√
150
]︁

Pr[|𝑢*T𝐵| ≤ 𝐶]
≤ 2𝑒−5 ≤ 1

12
.

So,
‖𝜇′‖ = sup

𝑣∈R𝑚,‖𝑣‖=1

E
[︀
⟨𝐵′, 𝑏⟩

]︀
≤ 1

12
.

Define a convex subset of R𝑚 by

𝑀 :=
{︁E[𝑓(𝐵′)𝐵′]

1/4
: 𝑓 ∈ 𝐿∞(R𝑚,R),

0 ≤ 𝑓(𝑥) ≤ 1 for every 𝑥 ∈ R𝑚 and E[𝑓(𝐵′)] =
1

4

}︁
,

and consider an arbitrary halfspace 𝐻 that contains −𝜇′. By Lemma 2.3.8 we have,

Pr[𝐵′ ∈ 𝐻] ≥ Pr[𝐵 ∈ 𝐻]− Pr[|𝑢*T𝐵| > 𝐶] ≥ 1

𝑒
− 1

12
− 1

150
=

1

4
.

Therefore, there exists 𝑆 ⊆ 𝐻 with Pr[𝐵′ ∈ 𝑆] = 1
4 . Then, E[1𝑆(𝐵′)] = 1

4 and,
E[𝐵′ | 𝐵′ ∈ 𝑆] = E[1𝑆(𝐵

′)𝐵′

1/4 ] ∈ 𝑀 , which implies that𝑀 ∩𝐻 ̸= ∅. Because this
holds for any 𝐻 with −𝜇′ ∈ 𝐻 , by the convexity of𝑀 we have −𝜇′ ∈𝑀 . Indeed,
suppose not, then there is a hyperplane passing at −𝜇′ which separates it from𝑀 ,
which cannot happen. We conclude that there exists 𝑓 : R𝑚 → R, with ‖𝑓‖∞ ≤ 1

and E[𝑓(𝐵′)] = 1
4 , such that E[𝑓(𝐵′)𝐵′]

1/4 = −𝜇′. Let 𝑔(𝑥) = 𝑓(𝑥)+4
5 .

Let 𝐵′′ be a random variable with 𝑓𝐵′′(𝑥) ∝ 𝑔(𝑥)𝑓𝐵′(𝑥). Note that:

𝑓𝐵′′(𝑥)/𝑓𝐵′(𝑥) = 𝑔(𝑥)/E𝐵′ [𝑔(𝐵′)] ≤ 1/E𝐵′ [𝑔(𝐵′)] ≤ 2.

Now, by Lemma 2.3.15 there exists a rejection sampling procedure 𝜓 for which
Pr[𝜓(𝐵′) = accept] = 1

2 and Law(𝐵′ | 𝜓(𝐵′) = accept) = 𝐵′′. Now we will show
that 𝐵′′ satisfies the required properties.

Firstly, we have E[𝐵′′] = E[𝑔(𝐵′)𝐵′]
E[𝑔(𝐵′)] = E[𝑓(𝐵′)𝐵′]+4E[𝐵′]

5E[𝑔(𝐵′)] = −4𝜇′+4𝜇′

5E[𝑔(𝐵′)] = 0,
proving the first stated property. Secondly, for every halfspace 𝐻 containing the
origin, by the Grünbaum inequality, Pr[𝐵 ∈ 𝐻] ≥ 1

𝑒 . So Pr[𝐵′ ∈ 𝐻] ≥ Pr[𝐵 ∈ 𝐻]−
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Pr[|𝑢*T𝐵| > 𝐶] ≥ 1
𝑒 −

1
150 ≥

1
4 . Because 𝑓𝐵′′ ≥ 𝑔 · 𝑓𝐵′ ≥ 4

5𝑓𝐵′ , we have
Pr[𝐵′′ ∈ 𝐻] ≥ 4

5 ·Pr[𝐵
′ ∈ 𝐻] ≥ 1

5 ≥
1

4𝑒2
. This proves that𝐵′′ has an approximately

symmetric distribution.
For all unit vectors 𝑣 ∈ R𝑚 we have:

𝑓⟨𝑣,𝐵′′⟩(𝑥) ≤
𝑓⟨𝑣,𝐵′⟩(𝑥)

Pr[𝜓(𝐵′) = accept]
≤ 2𝑓⟨𝑣,𝐵′⟩(𝑥).

This implies Var(⟨𝑣,𝐵′′⟩) 4 2Var(⟨𝑣,𝐵′⟩) 4 2𝐼𝑚. Because Cov(𝐵′) ≥ 1
10𝐼𝑚 and

the fact that ⟨𝐵′, 𝑣⟩ is logconcave, by Lemma 2.3.7, 𝑓⟨𝐵′,𝑣⟩ ≤ 1√︀
Var ⟨𝐵′,𝑣⟩

≤ 4. Hence,

𝑓⟨𝑣,𝐵′′⟩ ≤ 2 · 𝑓⟨𝑣,𝐵′⟩ ≤ 768. Now, Lemma 2.3.2 implies that Var(⟨𝐵′′, 𝑣⟩) ≥ 1
768 .

Hence 1
768𝐼𝑚 4 Cov(𝐵′) 4 2𝐼𝑚. Now by Lemma 4.5.2 anti-concentration holds

with a constant parameter.

Proof of Theorem 3.1.1

Proof of Theorem 3.1.1. Consider the optimal solutions 𝑥* and 𝑢* to respectively
the LPs (Primal LP) and (Dual LP). We condition on the event |𝑁0| ≥ 𝑛/105 and
‖𝑢*‖2 ≤ 32, where 𝑁0 := {𝑖 ∈ [𝑛] : 𝑥*𝑖 = 0}. By Lemma 3.3.4, this event occurs
with probability at least 1 − 𝑒−Ω(𝑛). Subject to this, we further condition on the
exact values of 𝑥*, 𝑢*. We will show that for every such conditioning, the integrality
is gap is small with high probability over the randomness of 𝐴𝑁0 .

Set 𝛿 := poly(𝑚) log𝑛
𝑛 , where the polynomial factor is the same one as dictated

by Theorem 4.3.4. We now show that we can construct a large subset 𝑍 ⊆ 𝑁0,
such that the reduced costs of the variables indexed by 𝑍 are small and the columns
𝐴𝑖, 𝑖 ∈ 𝑍 , are independent and satisfy the necessary conditions in order to apply
Theorem 4.3.4 to round 𝑥* to a near optimal solution. By Lemma 3.3.2, first note that
(𝑐𝑖, 𝐴,̇𝑖), 𝑖 ∈ 𝑁0 are independent and distributed according to 𝑢*T𝐴𝑖 − 𝑐𝑖 > 0.

By Lemma 3.3.8, using rejection sampling we can sample a set 𝑍 ⊆ 𝑁0, such
that Law(𝐴𝑖|𝑖 ∈ 𝑍) = Law(𝐴𝑖 | |𝑢*T𝐴𝑖| ≤ 𝐶), Pr[𝑖 ∈ 𝑍|𝑖 ∈ 𝑁0] = Ω(𝛿) and such
that 𝑢*T𝐴𝑖 − 𝑐𝑖 ∈ [0, 𝛿] for all 𝑖 ∈ 𝑍 . If columns of 𝐴 have a discrete symmetric
distribution (DSU), thenE[𝐴𝑖|𝑖 ∈ 𝑍] = 0. Moreover, by Lemma 3.3.7, the distribution
of the columns in𝑍 is symmetric (and therefore satisfies Definition 4.3.1), and satisfies
the anti-concentration property with parameter 𝜅 = Ω(1). In the logconcave case,
(LI), we apply a second round of rejection sampling to𝑍 , as described in Lemma 3.3.9,
which achieves that the law of 𝐴𝑖, 𝑖 ∈ 𝑍 is mean-zero, approximately symmetric,
and anti-concentrated with parameter 𝜅 = Ω(1). Furthermore, this second step of
rejection sampling only decreases the probability that 𝑖 ∈ 𝑍 by at most a constant
factor.

In both cases, we see that E[𝑍] ≥ Ω(𝛿|𝑁0|) = Ω (poly(𝑚) log𝑛). Thus, by the
Chernoff bound (2.1), |𝑍| ≥ Ω(poly(𝑚) log𝑛) with probability at 1 − 𝑛− poly(𝑚).
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We now condition on the exact set 𝑍 ⊆ 𝑁0 subject to this size lower bound. Note
that 𝐴𝑖, 𝑖 ∈ 𝑍 , are independent approximately symmetric, anti-concentrated with
parameter 𝜅 = Ω(1) and mean-zero random vectors.

Set 𝑝 = 𝜀·𝜅4

1000𝑚5 , where 𝜀 > 0 is chosen small enough to make sure that we
have 𝜅3 exp

(︁
𝜅3

3·802𝑝𝑚3

)︁
≥ 50000𝑚2. We consider the rounded vector 𝑥′, from

Lemma 3.3.1, and define the target, 𝑡 := 𝐴(𝑥* − 𝑥′) − 𝑛4 exp(−𝑝𝜅3|𝑍|/𝑚)1𝑚 in
(LI) setting and 𝑡 := ⌊𝑘𝐴(𝑥* − 𝑥′)⌋/𝑘 in the (DSU) setting. We will now apply The-
orem 4.3.4 to obtain a set 𝑇 ⊆ 𝑍 such that ‖

∑︀
𝑖∈𝑇 𝐴𝑖 − 𝑡‖2 ≤ 𝑛4 exp(−𝜅3𝑝|𝑍|/𝑚)

in the (LI) setting or
∑︀

𝑖∈𝑇 𝐴𝑖 = 𝑡 in the (DSU) setting. This will help us both fix
the slack introduced by the rounding as well as enforce that the resulting solution is
feasible.

We now invoke Lemma 3.3.1, which coupled with |𝑍|𝑝 = Ω(poly(𝑚) log(𝑛))
and the fact max

𝑖∈[𝑛]
‖𝐴𝑖‖ = 𝑂(

√︀
log(𝑛) +

√
𝑚), shows that, as long as the degree of

the polynomial in 𝛿 is large enough,

‖𝑡‖ ≤ ‖𝐴(𝑥* − 𝑥′)‖+𝑚(𝑛4 exp(−𝜅3𝑝|𝑍|/𝑚) + 1)

≤ 𝑂(
√︀
𝑚 log𝑛+𝑚) = 𝑜(

√︀
𝑝|𝑍|𝑚).

Thus, for large 𝑛, Theorem 4.3.4 applies to the matrix 𝐴𝑍 and 𝑡 in the (LI) setting and
the matrix 𝑘𝐴𝑍 , 𝑘𝑡 in the (DSU) setting. Thus, with probability 1− 𝑒−Ω(𝑝|𝑍|) = 1−
𝑛− poly(𝑚) there exists a set 𝑇 ⊆ 𝑍 such that |𝑇 | ≤ 3

2𝑝|𝑍|, and ‖
∑︀

𝑖∈𝑇 𝐴𝑖 − 𝑡‖ ≤
32𝑛4 exp(−𝜅3𝑝|𝑍|/80𝑚) in the (LI) setting and

∑︀
𝑖∈𝑇 𝐴𝑖 = 𝑡 in the (DSU) setting.

Now we let 𝑥′′ = 𝑥′ + 1𝑇 . We now show that

𝐴𝑥′′ ≤ 𝑏 and 𝑢*T(𝑏−𝐴𝑥′′) ≤ 1/ poly(𝑛). (3.15)

Firstly, in the (DSU) setting, we have

𝐴𝑥′′ = 𝐴𝑥′ + ⌊𝑘(𝐴𝑥* −𝐴𝑥′)⌋/𝑘 ≤ 𝐴𝑥* ≤ 𝑏,

so𝑥′′ is a feasible integer solution. Take 𝑗 ∈ [𝑚] such that𝑢*𝑗 > 0. By complementary
slackness we have that (𝐴𝑥*)𝑗 = 𝑏𝑗 ∈ Z/𝑘. Since 𝐴 ∈ Z𝑚×𝑛/𝑘 and 𝑥′ ∈ Z𝑛, we
have that 𝐴𝑥′ ∈ Z𝑚/𝑘. In particular,

(𝐴𝑥′′)𝑗 = (𝐴𝑥′)𝑗 + ⌊𝑘(𝐴𝑥* −𝐴𝑥′)𝑗⌋/𝑘 = (𝐴𝑥′)𝑗 + ⌊𝑘(𝑏𝑗 −𝐴𝑥′)𝑗⌋/𝑘
= (𝐴𝑥′)𝑗 + 𝑘(𝑏𝑗 −𝐴𝑥′)𝑗/𝑘 = 𝑏𝑗 .

We conclude that 𝑢*T(𝑏−𝐴𝑥′′) = 0 as needed.
In the (LI) setting, we first note that

‖𝐴𝑥′′ − (𝐴𝑥* − 𝑛4 exp(−𝜅3𝑝|𝑍|/𝑚)1𝑚)‖ = ‖
∑︁
𝑖∈𝑇

𝐴𝑖 − 𝑡‖ ≤ 𝑛4 exp(−𝜅3𝑝|𝑍|/𝑚).
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So, we must have 𝐴𝑥′′ ≤ 𝐴𝑥* ≤ 𝑏, and hence 𝑥′′ is a feasible. Furthermore, by
complementary slackness

𝑢*T(𝑏−𝐴𝑥′′) = 𝑢*T(𝐴𝑥* −𝐴𝑥′′)
≤ ‖𝑢*‖‖𝐴𝑥* −𝐴𝑥′′‖ ≤ 32(‖𝐴𝑥* − 𝑡‖+ ‖𝑡−𝐴𝑥′′‖)
≤ 32(𝑚+ 1)𝑛4 exp(−𝜅3𝑝|𝑍|/𝑚) ≤ 1/ poly(𝑛).

To conclude, we use 𝑥′′ to bound the integrality gap with the (Gap Formula)
applied to 𝑥′′ and 𝑢*:

IPGAP = 𝑢*T(𝑏−𝐴𝑥′′) +

(︃
𝑛∑︁

𝑖=1

𝑥′′𝑖 (𝐴
T𝑢* − 𝑐)+𝑖 + (1− 𝑥′′𝑖 )(𝑐−𝐴T𝑢*)+𝑖

)︃
= 𝑢*T(𝑏−𝐴𝑥′′) +

∑︁
𝑖∈𝑇

(𝐴T𝑢* − 𝑐)𝑖 (by complementary slackness)

≤ 1/ poly(𝑛) + |𝑇 | · 𝛿 (by (3.15) and 𝑇 ⊆ 𝑍)

≤ 𝑂
(︂
poly(𝑚) log(𝑛)2

𝑛

)︂
.

The gap bound for packing IPs

In this section we will proveTheorem 3.1.2, our bound for Discrete Packing IPs. Here,
the objective 𝑐 ∈ R𝑚 has independent entries that are exponentially distributed
with parameter 𝜆 = 1. The 𝑚 × 𝑛 constraint matrix 𝐴 has independent columns
which are distributed with discrete uniform (DU) independent entries which are
uniform on the interval {1, . . . , 𝑘}, 𝑘 ≥ 3.

As in the centered case, we divide the constraint matrix 𝐴 and the right hand
side 𝑏 by 𝑘. So, we will assume that the entries of 𝐴 are uniformly distributed in
{ 1𝑘 , . . . , 1} and that the right hand side 𝑏 lies in ((𝑛𝛽, 𝑛(1/2− 𝛽))∩ Z

𝑘 )
𝑚. This way,

we can see this setting as a discrete approximation of the continuous setting where
the entries of 𝐴 are uniformly distributed in [0, 1], like in [DF89].

We want to show IPGAP ≤ exp(𝑂(1/𝛽)) poly(𝑚)(log𝑛)2
𝑛 with probability at least

1 − 𝑛− poly(𝑚). We will do this by first solving a slightly modified version of the
LP-relaxation. We choose a 𝑏′ < 𝑏. Now we let 𝑥* be the minimizer of (Primal LP),
where 𝑏 is replaced by 𝑏′ and let 𝑢* be the optimal solution to the corresponding
(Dual LP). We round down the solution, setting 𝑥′𝑖 := ⌊𝑥*𝑖 ⌋. Note that ‖𝐴(𝑥* −
𝑥′)‖ ≤

∑︀
𝑖:𝑥*

𝑖∈(0,1)
‖𝐴𝑖‖ ≤ 𝑚

√
𝑚.

Similar to the proof of Theorem 3.1.1, our proof proceeds by flipping 𝑥′𝑖 to 1 for a
subset of indices for which 𝑥*𝑖 = 0. By duality, these are columns with 𝐴𝑖 − 𝑐𝑖 ≥ 0.
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To be able to apply Theorem 4.3.7, we convert the conditional distribution of the
columns of 𝐴 back into their original distribution using rejection sampling:

Lemma 3.3.10. Let 𝐵 = 𝐴𝑖 and let 𝐵′, 𝑐′ have Law(𝐵′, 𝑐′𝑖) = Law(𝐵, 𝑐𝑖 | 𝑢*T𝐵 −
𝑐𝑖 ≥ 0). When 𝛿 ≤ 1, here exists a rejection sampling procedure 𝜓 such that:

• Pr[𝜓(𝐵′, 𝑐′𝑖) = accept] ≥ 1
11𝛿 exp(−‖𝑢

*‖1).

• Law(𝐵′ | 𝜓(𝐵′, 𝑐′𝑖) = accept) = unif(({ 1𝑘 , . . . , 1} ∩ [ 1
3𝑚 , 1])

𝑚).

• 𝑢*T𝐵′ − 𝑐′𝑖 ∈ [0, 𝛿] whenever 𝜓(𝐵′, 𝑐′𝑖) = accept.

Proof. Let 𝑐′′ and 𝐵′′ be independent random variables with 𝑐′′ ∼ Unif(0, 𝛿) and
let 𝐵′′ ∼ Unif(({ 1𝑘 , . . . , 1} ∩ [ 1

3𝑚 , 1])
𝑚). Note that 𝑓𝐵′′(𝑥) ≤ 𝑓𝐵(𝑥)/(1 − 1

𝑚)𝑚.
Now we will apply Lemma 2.3.15 to transform (𝐵′, 𝑐′) into (𝐵′′, 𝑐′′) using rejection
sampling. Observe that for any 𝐵̄ ∈ R𝑚, 𝑐 ∈ R with 𝑢*T𝐵 − 𝑐 ∈ [0, 𝛿]:

𝑓(𝐵′′,𝑐′′)(𝐵̄, 𝑐)

𝑓(𝐵′,𝑐′)(𝐵̄, 𝑐)
=

𝑓𝐵′′(𝐵̄)/𝛿

𝑓𝐵(𝐵̄)𝑓𝑐(𝑐)/ Pr𝑐[𝑢*T𝐵 − 𝑐 ≥ 0]
≤
𝑓𝐵(𝐵̄)/(1− 1

𝑚)𝑚/𝛿

𝑓𝐵(𝐵̄)𝑓𝑐(𝑐)

≤ 4

𝛿𝑓𝑐(𝑐)
≤ 4

𝛿 exp(−𝑢*T𝐵 − 𝛿)
≤ 11

𝛿 exp(−‖𝑢*‖1)
.

The stated result now follows directly by applying Lemma 2.3.15 on (𝐵′, 𝑐′𝑖) to get
a rejection sampling procedure that satisfies Law((𝐵′, 𝑐′𝑖) | 𝜓(𝐵′, 𝑐′𝑖) = accept) =
Law(𝐵′′, 𝑐′′).

In the previous lemma, both the acceptance probability and the maximal size
of 𝛿 depend on ‖𝑢*‖1. To prevent this from affecting the proof, we will show that
with high probability Ω(𝛽4) ≤ ‖𝑢*‖1 ≤ 𝑂( 1𝛽 ). Because our proof of Theorem 3.1.2
will rely on flipping the columns for which 𝑥*𝑖 = 0, we will also show that with high
probability the number of these columns is at least proportional to 𝑛. We make use
of the following bound on the binomial coefficient:

Lemma 3.3.11 ([Gal14, Theorem 3.1]). For all 𝛼 ≤ 1
2 and all 𝑛,

⌊𝛼𝑛⌋∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
≤ exp(𝐻(𝛼)𝑛),

where 𝐻 is the entropy function defined as 𝐻(𝑥) = −𝑥 ln(𝑥)− (1− 𝑥) ln(1− 𝑥).

Now we can derive the desired result.
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Lemma 3.3.12. Consider the packing setting, with the parameter 𝛽 ∈ (0, 1/4) and
𝑏′ ∈ ((𝑛𝛽/2, 𝑛(1/2− 𝛽)) ∩ 1

𝑘Z)
𝑚. Then, with probability at least 1− 𝑒−Ω(𝛽2𝑛), we

have Ω(𝛽4) ≤ ‖𝑢*‖1 ≤ 𝑂( 1𝛽 ) and |𝑁0| ≥ Ω(𝛽4𝑛).

Proof. Note that the distribution of the 𝑐𝑖’s is exponential and therefore logconcave
with E[𝑐𝑖] = 1. By Lemma 2.3.11 we now see that with probability 1− 𝑒−Ω(𝑛), we
have 3𝑛 ≥

∑︀𝑛
𝑖=1 𝑐𝑖 and consequently,

3𝑛 ≥
𝑛∑︁

𝑖=1

𝑐𝑖 = 𝑐T1𝑛 ≥ valLP(𝑥*) = val*(𝑢*) ≥
𝑚∑︁
𝑖=1

𝑏′𝑖𝑢
*
𝑖 ≥

𝑛 · 𝛽
2
‖𝑢*‖1.

Hence, we have ‖𝑢*‖1 ≤ 6
𝛽 , with high probability.

For the second claim, let 𝐻 : (0, 12 ] → (0,− ln(12)] be defined with 𝐻(𝑥) =
−𝑥 ln𝑥 − (1 − 𝑥) ln(1 − 𝑥). Set 𝛼 := min(12𝛽,𝐻

−1(18𝛽
2)). As 𝐻(𝑥) ≤ 2

√
𝑥,

we have 𝐻−1(𝑥) ≥ 𝑥2

4 and hence 𝛼 ≥ 1
256𝛽

4. Let 𝑥 ∈ {0, 1}𝑛 and suppose that
𝐾 := |{𝑖 : 𝑥𝑖 = 1}| ≥ (1− 𝛼)𝑛. By first using 𝑏1 ≤ (12 − 𝛽)𝑛, and E[(𝐴𝑥)1] = 𝐾

2 ,
and then applying Hoeffding’s inequality we see,

Pr
[︀
(𝐴𝑥)1 ≤ 𝑏′1

]︀
≤ Pr

[︂
(𝐴𝑥)1 ≤

1− 𝛽
2

𝑛

]︂
= Pr

[︂
(𝐴𝑥)1 −

1− 𝛼
2

𝑛 ≤ −𝛽 − 𝛼
2

𝑛

]︂
≤ Pr

[︂
(𝐴𝑥)1 −

𝐾

2
≤ −𝛽 − 𝛼

2
𝑛

]︂
= Pr

[︂
(𝐴𝑥)1 − E[(𝐴𝑥)1] ≤ −

𝛽 − 𝛼
2

𝑛

]︂
≤ exp

(︀
−(𝛽 − 𝛼)2𝑛

)︀
≤ exp

(︂
−1

4
𝛽2𝑛

)︂
.

Let 𝑆 = {𝑥 ∈ {0, 1}𝑛 : |{𝑖 : 𝑥𝑖 = 1}| ≥ (1 − 𝛼)𝑛}. Note that by Lemma 3.3.11,
|𝑆| ≤

∑︀⌊𝛼𝑛⌋
𝑖=0

(︀
𝑛
𝑖

)︀
≤ exp(𝐻(𝛼)𝑛). Taking the union bound over all 𝑥 ∈ 𝑆, we see

that

Pr[∃𝑥 ∈ 𝑆 : (𝐴𝑥)′1 ≤ 𝑏′1] ≤ |𝑆| exp(−
1

4
𝛽2𝑛) ≤ exp(𝐻(𝛼)𝑛− 1

4
𝛽2𝑛)

≤ exp(−1

8
𝛽2𝑛).

So, with probability at least 1 − 𝑒−Ω(𝛽2𝑛) all feasible values 𝑥 ∈ {0, 1}𝑛 have
|{𝑖 : 𝑥𝑖 = 0}| ≥ 𝛼𝑛 and in particular |𝑁0| ≥ 𝛼𝑛 ≥ 1

256𝛽
4𝑛.

At the same time, observe that when 𝑖 ∈ 𝑁0, we must have 𝑐𝑖−𝑢*T𝐴𝑖 ≤ 0, so in
particular ‖𝑢*‖1 ≥ 𝑐𝑖. We have Pr[𝑐𝑖 ≤ ln( 1

1−𝛼/2)] ≤ 1− exp(− ln( 1
1−𝛼/2)) =

1
2𝛼.

By the Chernoff bound (2.1) this implies that with probability at least 1−exp(−Ω(𝑛))
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we have |{𝑖 ∈ [𝑛] : 𝑐𝑖 ≤ ln( 1
1−𝛼/2)}| ≤

3
4𝛼𝑛. If this event holds and at the same

time we have |𝑁0| ≥ 𝛼𝑛, then this implies ‖𝑢*‖1 ≥ ln( 1
1−𝛼/2) because otherwise

𝑁0 ⊆ {𝑖 ∈ [𝑛] : 𝑐𝑖 ≤ ln( 1
1−𝛼/2)}, contradicting the bounds on their size. So, we

can conclude that with high probability we have ‖𝑢*‖1 ≥ ln( 1
1−𝛼/2) ≥ − ln(1 −

2−8𝛽4) ≥ 2−8𝛽4.

Proof of Theorem 3.1.2. Let 𝑟 = ⌈10
6𝑚12 log(𝑛)

𝑠2
⌉, where 𝑠 is a constant that we will

choose later. Let 𝜇 =
𝑘+⌈ 𝑘

3𝑚
⌉

2𝑘 = E[𝑈 ], where 𝑈 ∼ Uniform({ 1𝑘 , . . . , 1} ∩ [ 1
3𝑚 , 1]).

Now we define
𝛾 =

𝑟

1000𝑚5
𝜇 and 𝑏′ = 𝑏− 𝛾1. (3.16)

Let 𝑥* and 𝑢* be the optimal solutions of (Primal LP) and (Dual LP) where 𝑏 is
replaced by 𝑏′. We will assume that 𝛽4

𝐶1
≤ ‖𝑢*‖1 ≤ 𝐶1

𝛽 and |𝑁0| ≥ 𝐶2 · 𝛽4 · 𝑛, for
some constants 𝐶1, 𝐶2. By Lemma 3.3.12 this happens probability 1 − 𝑒−Ω(𝛽2𝑛).
Subject to this, we condition on the exact values of 𝑥*, 𝑢*.

Let 𝛿 := 11 exp(𝐶1/𝛽)𝑟
𝐶2𝛽4𝑛

. By our assumption that 𝑛 ≥ poly(𝑚) exp(Ω(1/𝛽)), we

may assume that 𝛿 ≤ 𝛽4/(𝐶1𝑚) ≤ ‖𝑢*‖1
3𝑚 . Thus, by Lemma 3.3.10 we can sample a

set 𝑍 ⊆ 𝑁0 such that for Law(𝐴𝑖|𝑖 ∈ 𝑍) = Uniform(({ 1𝑘 , . . . , 1} ∩ [ 1
3𝑚 , 1])

𝑚) and
that Pr[𝑖 ∈ 𝑍|𝑖 ∈ 𝑁0] =

1
11𝛿 exp (−‖𝑢

*‖1). Noting that E[|𝑍|] = 2𝑟, by Chernoff’s
inequality (2.1), with probability at least 1− 𝑛− poly(𝑚), we have |𝑍| ≥ 𝑟. Now we
restrict 𝑍 to its first 𝑠 elements, to get |𝑍| = 𝑟. Observe that E[𝐴𝑖|𝑖 ∈ 𝑍] = 𝜇1.

We consider the target vector 𝑡 ∈ R𝑚, defined by:

𝑡𝑖 :=

{︃
𝑏𝑖 − (𝐴𝑥′)𝑖 : 𝑢*𝑖 > 0

⌊𝛾⌋ : otherwise
,

which satisfies (𝑏−𝐴𝑥′ − 𝑡)T𝑢* = 0. Our next step will be to apply Theorem 4.3.7
on 𝑘𝐴𝑍 ∈ Z𝑚×𝑟 and 𝑘𝑡 ∈ Z𝑚 with parameter 𝑝 = 𝛾

𝜇𝑟 = 1
1000𝑚5 , to get a set 𝑇 ⊆ 𝑍

such that
∑︀

𝑖∈𝑇 𝐴𝑖 = 𝑡. Note that we have chosen 𝛾 and 𝑟 to have 𝑝4 = 𝜔(𝑚
3

𝑟 ).
To verify that 𝑡 is indeed covered by Theorem 4.3.7, note that by Lemma 3.3.2

the columns 𝑘𝐴𝑖 for 𝑖 ∈ 𝑍 are independent with entries uniformly distributed in
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{⌈𝑘/𝑚⌉, . . . , 𝑘}. We now show that 𝑡 is sufficiently close to the mean |𝑍|𝑝𝜇:

‖𝑡− |𝑍|𝑝𝜇|‖ = ‖𝑡− 𝛾1‖ =
√︃ ∑︁

𝑗:𝑢*
𝑗>0

(𝑏𝑗 − (𝐴𝑥′)𝑗)2 + |{𝑗 : 𝑢*𝑗 = 0}|(𝛾 − ⌊𝛾⌋)2

≤
√︃ ∑︁

𝑗:𝑢*
𝑗>0

(𝐴(𝑥* − 𝑥′)𝑗)2 + |{𝑗 : 𝑢*𝑗 = 0}|

≤
√︃ ∑︁

𝑗:𝑢*
𝑗>0

‖𝑥* − 𝑥′‖21 + |{𝑗 : 𝑢*𝑗 = 0}|

≤ 𝑚1.5 ≤ 𝑠

1000𝑚5

√
𝑟𝑚 = 𝑠𝑝

√︀
|𝑍|𝑚 ≤ 𝑠

√︀
𝑝|𝑍|𝑚.

Now choose the constant 𝑠 such that the previous inequality implies the condition
from Theorem 4.3.7. As a result, with probability 1− exp (−𝑝|𝑍|) ≥ 1− 𝑛− poly(𝑚)

there exists a set 𝑇 ⊆ 𝑍 , such that
∑︀

𝑖∈𝑇 𝐴𝑖 = 𝑡.
Let 𝑥′′ = 𝑥′ + 1𝑇 . Noting that 𝑥′ was obtained from 𝑥*, for 𝑖 with 𝑢*𝑖 = 0 we

have
(𝐴𝑥′′)𝑖 = (𝐴𝑥′)𝑖 + 𝑡𝑖 ≤ 𝑏′𝑖 + 𝛾 = 𝑏𝑖.

For, 𝑖 with 𝑢*𝑖 > 0 we have:

(𝐴𝑥′′)𝑖 = (𝐴𝑥′)𝑖 + 𝑡𝑖 = 𝑏𝑖,

which means that 𝑥′′ is a feasible solution to the integer program.
Using (Gap Formula) for 𝑥′′ and 𝑢*, we now get:

IPGAP = valLP− valIP ≤ val*LP(𝑢
*)− valLP(𝑥′′)

= 𝑏T𝑢* +

𝑛∑︁
𝑖=1

(𝑐−𝐴T𝑢*)+𝑖 − 𝑐
T𝑥′′

= (𝑏−𝐴𝑥′′)T𝑢* +

(︃
𝑛∑︁

𝑖=1

𝑥′′𝑖 (𝐴
T𝑢* − 𝑐)+𝑖 + (1− 𝑥′′𝑖 )(𝑐−𝐴T𝑢*)+𝑖

)︃
= (𝑏−𝐴𝑥′ − 𝑡)T𝑢* +

∑︁
𝑖∈𝑇

(𝐴T𝑢* − 𝑐)𝑖 (by complementary slackness)

=
∑︁
𝑖∈𝑇

(𝐴T𝑢* − 𝑐)𝑖 (since (𝑏−𝐴𝑥′ − 𝑡)T𝑢* = 0)

≤ 𝛿|𝑇 | ≤ (exp(𝐶1/𝛽) poly(𝑚) log𝑛)2

𝑛
. (by Lemma 3.3.10)
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3.4 Conclusion

We have provided high-probability upper bounds on the size of branch-and-bound
trees for randomly sampled integer programs. The bounds we have shown apply to
instances of the {0, 1}-knapsack problem and the generalized assignment problem.

As we mentioned before, real-world LPs often have a large number of combi-
natorial constraints. Such constraints generally have discrete coefficients, which
motivated us to study discretely distributed constraint matrices. However, the IPs
that we studied do not have an inherent combinatorial structure. For future work, it
would be particularly interesting to study the size of branch-and-bound trees for
random IPs with more combinatorial structure.

Theorem 3.1.3, our bound on the tree size holds for quite general polytopes
𝑃 , which means that it can also be applied to other types of problems, such as
the matching problem with additional knapsack constraints. In order to derive
appropriate bounds for such problems, one would need bounds on the integrality gap
of the polytope 𝑃 , along with a bound on the number of elements of corresponding
knapsack polytope.



62 3. An average-case analysis of branch-and-bound via integrality gaps



Chapter 4

Discrepancy bounds for random matrices

In Chapter 3, we have shown a high probability bound on the integrality gap of
random IPs from several classes of probability distributions. This proof consists of
rounding LP solutions using a new “discrepancy theorem”. In this chapter, we will
prove this theorem.

4.1 Introduction

Consider the following question: Let 𝑡 ∈ R𝑚 be a target vector and let𝐴 ∈ R𝑚×𝑛̄ be
a “nice” random matrix with independent columns. When can we ensure with high
probability that 𝑡 is equal to or very close to a {0, 1} combination of the columns of
𝐴?

A general answer to this question was given in [BDHT22, Lemma 1], improving
upon [DF89, Lemma 3.4]. However, it enforced very strict conditions on the entries
of 𝐴. Specifically, the entries of 𝐴 needed to be independent, mean zero with
unit variance, absolutely continuous random variables of bounded density which
“converge quickly enough” to a Gaussian when averaged. Furthermore, for the
targets 𝑡 in the “range” of 𝐴, the probability of successfully hitting 𝑡 was only Θ(1).

In this chapter we give much more general and powerful discrepancy theorems.
We state them below, restricted to special cases relevant for our applications (see
Theorem 4.3.4 for the general result).

Theorem 4.3.5. Suppose the columns of 𝐴 ∈ R𝑚×𝑛 are continuously distributed,
independent with a common mean 𝜇 ∈ R𝑚, are approximately symmetric around their
mean, and (Θ(1),Ω(1))-anti-concentrated. Let 𝑝 ∈ [0, 1] with poly(𝑚) log(𝑛)

𝑛 ≤ 𝑝 ≤
1

poly(𝑚) .

Then, with probability 1−𝑒−Ω(𝑝𝑛) for every 𝑡with ‖𝑡−𝑝𝑛𝜇‖ ≤ 𝑂
(︁ √

𝑝𝑛
log(𝑚)𝑚

)︁
there

exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that ‖𝐴1𝑆 − 𝑡‖ ≤ exp
(︀
−Ω(𝑝𝑛𝑚 )

)︀
.

The contents of this chapter are based on joint work with Daniel Dadush and Dan Mikulincer
[BDM23].
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The conditions of anti-correlation and approximate symmetry are technical and
will be defined in Section 4.3. The above corollary includes the case where the
columns of 𝐴 are logconcave, isotropic, by Lemma 4.4.1.

Theorem 4.3.7. Suppose the entries of𝐴 are uniformly sampled from {𝑖, 𝑖+1, . . . , 𝑖+

𝑘} for 𝑘 ≥ 𝑗 ≥ max(2, |𝑖|). Let 𝑝 ∈ [0, 1] with poly(𝑚) log(𝑛) log(𝑘)
𝑛 ≤ 𝑝 ≤ 1

poly(𝑚) .

Then, with probability 1 − 𝑒−Ω(𝑝𝑛) for every vector 𝑡 ∈ Z𝑛 with ‖𝑡 − 𝑝𝑛𝜇‖ ≤
𝑂
(︁
𝑘

√
𝑝𝑛

log(𝑚)𝑚

)︁
there exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that 𝐴1𝑆 = 𝑡.

Relations to discrepancy theory

We first explain the connection to linear discrepancy. As defined by Lovász, Spencer
and Vesztergombi [LSV86], the linear discrepancy of a matrix 𝐴 ∈ R𝑚×𝑛 is equal
to lindisc(𝐴) := max𝜆∈[0,1]𝑛 min𝑥∈{0,1}𝑛 ‖𝐴(𝑥− 𝜆)‖∞. That is, it is the maximum
“rounding error” one must incur to round a [0, 1] combination of the columns to
a {0, 1} combination (the specific choice of ℓ∞ vs ℓ2 norm is not important in
our context). The discrepancy disc(𝐴) of 𝐴 is linear discrepancy restricted to
𝜆 = 1𝑛/2 (the all 1/2 vector). It is more common to expressed discrepancy by
min𝑥∈{−1,1}𝑛 ‖𝐴𝑥‖∞ = 2disc(𝐴), in which case 𝑥 ∈ {−1, 1}𝑛 is interpreted as
a 2-coloring of the columns of 𝐴. While linear discrepancy is always larger than
discrepancy, [LSV86] showed the maximum discrepancy of any subset of the columns
of 𝐴, known as hereditary discrepancy, upper bounds lindisc(𝐴) up to a factor of 2.

Bounds on the discrepancy of various matrix classes, often induced by the
incidence matrix of set system, have found many applications in computational
geometry and complexity (see [Mat99; Cha01]). Over the last decade or so, efficient
algorithms for producing low-discrepancy colorings have been developed [Ban10;
LM15; Rot17; ES18; BDGL18] and have found many applications in the context of
approximation algorithms [LRS11; HR17; BT69; BRS22].

With the above perspective, Theorem 4.3.4 can be interpreted as bounding the
linear discrepancy of the random matrix 𝐴 for combinations 𝜆 ∈ [0, 1] which are
very close to 𝑝1𝑛, where 𝑝 ∈ (0, 1) is as above. As the columns of𝐴 are independent
with mean 𝜇, one can expect that 𝐴(𝑝1𝑛) ≈ 𝑝𝑛𝜇. Perhaps slightly less clear is that
every 𝑡 ∈ R𝑚, which is close to 𝑝𝑛𝜇, will in fact be exactly expressible as 𝑡 = 𝐴𝜆,
where 𝜆 ≈ 𝑝1𝑛 with high probability (this requires an analysis of the singular
values of 𝐴). Theorem 4.3.4 now shows that 𝜆 can be replaced by 𝑥 ∈ {0, 1}𝑛 with
‖𝑥‖1 = Θ(𝑝𝑛) incurring either no error in the discrete case (assuming 𝑡 ∈ Z𝑛)
or exponentially small error in the continuous case, thereby bounding the linear
discrepancy of the combination 𝜆. At least in the continuous case, we note that one
can in fact adapt the proof of Theorem 4.3.4 to directly bound the linear discrepancy
of any “reasonable” combination 𝜆 (i.e., without the detour through the mean 𝜇).
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This would be somewhat less useful for the integrality gap application we consider
here, since it would be give significantly less precise guarantees on the targets we
can expect to hit. Interestingly, while the application pursued here is algorithmic,
i.e, bounding the complexity of branch-and-bound, we are not aware of any efficient
algorithm to compute the rounding 𝑥 guaranteed by Theorem 4.3.4.

Crucial to the linear discrepancy bounds we achieve in Theorem 4.3.4, i.e., either
exponential small or zero, is that the matrix 𝐴 has many more columns than the
dimension𝑚. In particular, reducing to bounds on hereditary discrepancy becomes
useless in this setting. The study of discrepancy in the “over complete” setting has
become very active more recently, with works focusing on the discrepancy of large
random matrices and set systems [Cos09; KLP12; EL19; HR19; FS20; Pot18; BM19].
Many of these works were motivated by the Beck-Fiala conjecture, which posits
that discrepancy of any {0, 1} matrix 𝐴 in which every column has at most 𝑡 ones
is bounded by 𝑂(

√
𝑡) (here 𝐴 can be interpreted as the incidence matrix of a set

system). Variants of this conjecture for random set systems and matrices where
established in [Cos09; EL19; HR19; FS20; Pot18; MMPP23; BM19], where in the
case 𝑛≫ 𝑚, it was shown that discrepancy quickly drops to 1 [HR19; FS20; Pot18;
MMPP23] or even exponentially close to zero [Cos09; FS20] depending on whether
the columns of the matrix 𝐴 are discretely or continuously distributed.

Discrepancy via Fourier Analysis

To prove our linear discrepancy theorem, we rely on a Fourier analytic approach,
which is entirely different from the second-moment counting based proofs in [DF89;
BDHT22]. The high level approach was pioneered by Kuperberg, Peled and Lovett
in [KLP12], where they applied Fourier analytic techniques to show the existence of
rigid combinatorial objects, such as orthogonal arrays, Steiner systems and regular
hypergraphs. At a technical level, for a matrix 𝐴 ∈ {0, 1}𝑚×𝑛, they were interested
in understanding the minimum 𝑝 ∈ (0, 1] such that 𝑝𝐴1𝑛 = 𝐴𝑥, where 𝑥 ∈ {0, 1}𝑛
and ‖𝑥‖1 = 𝑝𝑛. They examined this question for highly symmetric deterministic
matrices coming from the above applications. The Fourier analytic approachwas later
applied by Hoberg and Rothvoss [HR19] and independently by Frank and Saks [FS20]
to show very strong upper bounds on the discrepancy min𝑥∈{−1,1}𝑛 ‖𝐴𝑥‖∞ of a
random matrix 𝐴 when 𝑛 ≫ 𝑚, where the columns of 𝐴 were drawn i.i.d. from
various distributions.

From a comparative perspective, our Theorem 4.3.4 sits in between the work
of [KLP12] and [HR19; FS20]. We work with random matrices 𝐴 as in [HR19; FS20],
though the question we attack is more in the spirit of [KLP12]. We note that unlike
[KLP12], it is not sufficient for us to show the existence of a rounding 𝑥 ∈ {0, 1}𝑛
such that𝐴(𝑥−𝑝1𝑛) is small or zero. For our applications, we require this to be true
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with 𝐴𝑝1𝑛 replaced by 𝑝𝑛𝜇 = E[𝐴𝑝1𝑛]. We further require the existence of 𝑥 to
hold for any target 𝑡 close enough to 𝑝𝑛𝜇. This last requirement however generally
comes for “free” with Fourier analytic techniques (the moment you can hit 𝑝𝑛𝜇
you can hit everything close to it as well). A more significant difficultly is that the
concentration of 𝐴𝑝1𝑛 around its mean 𝑝𝑛𝜇 is rather weak. That is, the probability
that 𝐴𝑝1𝑛 is close to its mean scales relative to the ambient dimension 𝑚 (which
is constant) instead of 𝑛. This makes achieving the 1− 𝑒−Ω(𝑝𝑛) success probability
more challenging.

We now explain the high-level approach. Let 𝐴 ∈ R𝑚×𝑛 be our random matrix
with columns havingmean𝜇 ∈ R𝑚 and covariancematrix𝜎2𝐼𝑚, and let 𝑝 ∈ (0, 1) be
our parameter. The strategy is to directly analyze the probability mass function of the
random variable 𝑌 = 𝐴𝑋 , where 𝑋1, . . . , 𝑋𝑛 are i.i.d. Bernoulli’s with probability
𝑝. [KLP12] also use this distribution, whereas [HR19; FS20] choose𝑋1, . . . , 𝑋𝑛 to be
uniform {−1, 1} random variables. Restricting attention to the discrete case, where
𝑌 ∈ Z𝑛, we show that Pr[𝑌 = 𝑡]≫ 0 for 𝑡 ∈ Z𝑛, when ‖𝑛𝑝𝜇− 𝑡‖ = 𝑂𝑚(𝜎

√
𝑝𝑛),

where 𝑂𝑚(𝜎2𝑝𝑛) roughly measures the “available variance” of 𝐴𝑋 in all directions.
Obtaining a bound for Pr[𝑌 = 𝑡] is done by applying the Fourier inversion formula,
showing that the Fourier coefficients are close to those of a Gaussian and integrating
(see Section 4.4 for an overview).

For 𝜃 ∈ [−1/2, 1/2]𝑚, the corresponding Fourier coefficient of 𝐴𝑋 is expressed
by E𝑋 [𝑒2𝜋𝑖⟨𝜃,𝐴𝑋⟩]. Similar to [HR19; FS20], we control the magnitude of these
coefficients using the anti-concentration properties of the columns of 𝐴. Specifically,
for our choice of column distributions, we need to show the the probability that
⟨𝜃,𝐴𝑖⟩, 𝑖 ∈ [𝑛], is “close” to an integer decays predictably as a function of 𝜎‖𝜃‖. We
note that the exact expression for the Fourier coefficients indeed differs depending
on whether the entries of 𝑋 are Rademacher or Bernoulli distributed, where the
former is more prone to parity issues (e.g., if 𝐴 ∈ {0, 1}𝑚×𝑛 and 𝑥 ∈ {−1, 1}𝑛, the
parity of 𝐴𝑥 is fixed). Such parity issues do not arise in our setting. As mentioned
above, we face a different difficulty, which is being able to pinpoint the exact targets
whose probabilities we can accurately estimate due to the poor concentration of
E𝑋 [𝐴𝑋] = 𝐴(𝑝1𝑛) around E𝑋,𝐴[𝐴𝑋] = 𝑛𝑝𝜇.

To deal with this issue, we first carefully subsample a set 𝑆 ⊆ [𝑛] of columns
from𝐴, whose sum is close to the mean, and then generate 𝑌 from these subsampled
columns. To construct 𝑆, we iterate through the columns one by one, adding𝐴𝑖 to 𝑆
if ⟨
∑︀

𝑗∈𝑆(𝐴𝑗−𝜇), 𝐴𝑖−𝜇⟩ ≤ 0 and ‖𝐴𝑖−𝜇‖ ≤ 2E[‖𝐴𝑖−𝜇‖22]1/2. This subsampling

deterministically ensures that ‖
∑︀

𝑖∈𝑆(𝐴𝑖−𝜇)‖2 ≤ 2
√︁∑︀

𝑖∈𝑆 E[‖𝐴𝑖 − 𝜇‖22], suitably
biasing the sum towards the mean. For the distributions we work with, it is easy to
show that |𝑆| = Ω(𝑛) with probability 1− 𝑒−Ω(𝑛), so we always have a constant
fraction of the columns left over. Note that this subsampling crucially uses our
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flexibility to drop columns of 𝐴, a distinguishing feature of {0, 1} combinations
versus {−1, 1} combinations. This subsampling process, however, causes non-trivial
dependencies among the columns of 𝐴. That is, the submatrix we use to generate
𝑌 no longer has independent columns. Fortunately, we show that even with the
conditioning induced by subsampling, the columns still retain enough of their anti-
concentration properties to allow the Fourier analytic estimates to go through.

Organization

In Section 4.2 we provide some preliminaries on Fourier analysis. In Section 4.3
we state the general version of our discrepancy theorem and in Section 4.4 we
provide the proof. In Section 4.5 we prove that the anti-concentration property that
is required in our main discrepancy theorem holds for the distributions we study.

4.2 Preliminaries on Fourier analysis

Our main tool for proving the discrepancy result is Fourier analysis and we review
here the necessary details. Fix 𝑋 ∼ 𝒟, a random vector in R𝑚. The Fourier
transform of 𝑋 (sometimes also called the characteristic function) is the complex-
valued function defined by 𝑋̂(𝜃) := E[exp(2𝜋𝑖⟨𝑋, 𝜃⟩)].

To understand the natural domain for 𝜃, we first define the (dual) period of 𝒟.
For this, choose an arbitrary 𝑎 ∈ support(𝒟) and denote,

period(𝒟) := {𝑣 ∈ R𝑚 : ⟨𝑣, 𝑤 − 𝑎⟩ ∈ Z, ∀𝑤 ∈ support(𝒟)}. (4.1)

The definition of period(𝒟) does not depend on the choice of 𝑎. It is readily seen that
when𝒟 is absolutely continuous with respect to the Lebesgue measure period(𝒟) =
{0}, while period(𝒟) = Z𝑚, when support(𝒟) ⊆ Z𝑚. These are the cases on which
we focus. Using the period, we define the fundamental domain of𝒟, in Fourier space
(where we suppress the dependence on 𝒟),

𝑉 := {𝜃 ∈ R𝑚 : ‖𝜃‖ ≤ inf
0̸=𝑤∈period(𝒟)

‖𝜃 − 𝑤‖}. (4.2)

Observe that if 𝒟 is absolutely continuous with respect to the Lebesgue measure,
then 𝑉 = R𝑚 and when support(𝒟) ⊆ Z𝑚, 𝑉 = [−1

2 ,
1
2 ]

𝑚.
The connection between 𝑋 and its Fourier transform comes from the Fourier

inversion formula [SW72, Theorem 1.20]:
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Theorem 4.2.1 (Fourier inversion formula). Suppose that either 𝒟 is absolutely
continuous, or support(𝒟) ⊆ Z𝑚. Then, for 𝑡 ∈ support(𝒟):

Pr[𝑋 = 𝑡] =

∫︁
𝜃∈𝑉

𝑋̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)𝑑𝜃.

If 𝑋 is absolutely continuous, we interpret Pr[𝑋 = 𝑡] as the density of 𝑋 at 𝑡.

Another desirable property of the Fourier transform is that it is particularly
amenable to convolutions (this is clear from the exponential representation but see
[SW72, Theorem 3.18]).

Theorem 4.2.2 (Multiplication-convolution theorem). Let 𝑋 and 𝑌 be two indepen-
dent random vectors. Then,

̂(𝑋 + 𝑌 )(𝜃) = 𝑋̂(𝜃)𝑌 (𝜃).

4.3 The discrepancy theorem

Let 𝐴 ∈ R𝑛×𝑚 be a random matrix with independent columns. Throughout the
chapter we assume that the columns of 𝐴 have the same mean, denoted as 𝜇. We
also make the assumption that all columns of 𝐴 have the same period, as defined
in (4.1), and denote it by period(𝐴). We will deal with two different cases: either
period(𝐴) = {0}, which means that the columns of 𝐴 are absolutely continuous, or
period(𝐴) = Z𝑚, in which case the columns of 𝐴 are supported in the lattice Z𝑚.

Before stating the result, let us introduce some definitions. We first describe the
distributions captured by our result; distributions with a non-negligible mass on
every half-space passing through their mean.

Definition 4.3.1 (approximately symmetric distributions). A probability distribution
𝒟 on R𝑚, with mean 𝜇, is called approximately symmetric if, for any 𝜈 ∈ R𝑚,

Pr
𝑋∼𝒟

(⟨𝑋, 𝜈⟩ ≥ ⟨𝜇, 𝜈⟩) ≥ 1

4𝑒2
.

Remark 4.3.2. The constant 1
4𝑒2

in the definition is somewhat arbitrary and could be
relaxed to any smaller constant. It is immediately clear that any distribution which is
symmetric around its mean is also approximately symmetric. Moreover, Grünbaum’s
inequality in Lemma 2.3.8 shows that logconcave measures are approximately
symmetric.
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Suppose that the columns of𝐴 are approximately symmetric. As a preprocessing
step in our proof, we apply a subsampling procedure to the columns of 𝐴 that
removes approximately half the columns. This step will change the distribution
and effective size of the random matrix 𝐴. After this step, the matrix 𝐴 will satisfy
appropriate concentration bounds that improve as 𝑛 increases, irregardless of the
value of𝑚 (Lemma 4.4.2).

Then, the main idea will be to choose 𝑆 ⊆ [𝑛] randomly with Pr[𝑖 ∈ 𝑆] = 𝑝 for
𝑝 ≤ 1

poly(𝑚) , independently for all 𝑖 ∈ [𝑛]. We then show that, with high probability
over 𝐴 and positive probability over 𝑆, 𝐴1𝑆 is close to a target vector 𝑡. Thus, let us
define the random vector 𝐷 := 𝐴1𝑆 .

To understand the distribution of 𝐷 we will consider its Fourier transform,
denoted 𝐷̂(𝜃) := E[exp(2𝜋𝑖⟨𝐷, 𝜃⟩)]. Note, that under the assumptions above, we
have period(𝐴) = period(𝐷), and so we shall use 𝑉 to denote the fundamental
domain of 𝐷, as in (4.2).

The next definition quantifies an appropriate notion of anti-concentration
properties for the columns of 𝐴.
Definition 4.3.3 (anti-concentration). Let 𝜎 ≥ 0 and 𝜅 ∈ (0, 1). We say the measure
𝒟 is (𝜎, 𝜅)-anti-concentrated if Cov(𝒟) ⪯ 𝜎2𝐼𝑚, and for any 𝜈 ∈ R𝑚 and any 𝜃 ∈ 𝑉 ,

Pr
𝑋∼𝒟

[︀
𝑑(𝜃T𝑋,Z) ≥ 𝜅min (1, ‖𝜃‖∞𝜎) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩

]︀
≥ 𝜅, (AC)

where 𝑑(𝜃T𝑋,Z) := inf
𝑧∈Z
|𝜃T𝑋 − 𝑧|. When 𝜎 is clear from the context, we will

sometimes omit the dependence on 𝜎 from the definition.
Without further details, the definition might seem opaque. Below we explain the

rationale for considering this notion of anti-concentration and demonstrate some
examples of distributions that satisfy Definition 4.3.3. For now, it shall suffice to say
that the (AC) property appears naturally when trying to establish bounds on Fourier
transforms.

It will be natural to measure the size of 𝜇 in relation to 𝜎. Hence we define
𝜁 = ‖𝜇‖2/𝜎2. With the above notation, the main result of this section is:
Theorem 4.3.4. Suppose that the columns of 𝐴 are independent with a common
period and a common mean 𝜇 ∈ R𝑚, are approximately symmetric, and (𝜎, 𝜅)-anti-
concentrated, with constants 𝜎, 𝜅 > 0. Further, let 𝑝 ∈ [0, 1] and assume that the
following technical condition is met:

𝑝 ≤ 𝜅3

216𝑚2
(︁
ln(16

√
𝜁 + 1) + 𝑚

2 ln
(︁
105𝑚
𝜅3

)︁)︁ (4.3)

𝑝 ≥ 1013𝑚6(𝜁 + 1)3 ln(𝑛)
𝜅12𝑛

(︂
ln(16

√︀
𝜁 + 1) +𝑚 ln

(︂
105𝑚

𝜅3

)︂)︂3

. (4.4)
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for 𝜁 = ‖𝜇‖2/𝜎2. Then, when period(𝐴) = {0}, with probability 1 − 𝑒−Ω(𝜅𝑝𝑛) we
have: For all 𝑡 ∈ R𝑚 such that

‖𝑡− 𝑝𝑛𝜇‖ ≤

⎯⎸⎸⎷ 𝜅3𝑝𝑛𝜎2

215𝑚
(︁
ln(16

√
𝜁 + 1) + 𝑚

2 ln
(︁
105𝑚
𝜅3

)︁)︁ ,
there is a set 𝑆 of size |𝑆| ∈ [ 1

400𝑝𝑛,
3

400𝑝𝑛] such that

‖𝐴1𝑆 − 𝑡‖ ≤ exp
(︂
−𝜅

3𝑝𝑛

80𝑚

)︂
𝜎𝑛3.

By getting rid of the dependency on 𝜎 and 𝜅, we get the following simplified
corollary.

Theorem 4.3.5. Suppose the columns of 𝐴 ∈ R𝑚×𝑛 are continuously distributed,
independent with a common mean 𝜇 ∈ R𝑚, are approximately symmetric around their
mean, and (Θ(1),Ω(1))-anti-concentrated. Let 𝑝 ∈ [0, 1] with poly(𝑚) log(𝑛)

𝑛 ≤ 𝑝 ≤
1

poly(𝑚) .

Then, with probability 1−𝑒−Ω(𝑝𝑛) for every 𝑡with ‖𝑡−𝑝𝑛𝜇‖ ≤ 𝑂
(︁ √

𝑝𝑛
log(𝑚)𝑚

)︁
there

exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that ‖𝐴1𝑆 − 𝑡‖ ≤ exp
(︀
−Ω(𝑝𝑛𝑚 )

)︀
.

Theorem 4.3.4, as stated, only deals with distributions which are absolutely
continuous with respect to the Lebesgue measure. However, the argument also
applies to measures with singularities. In particular, the result also holds for
distributions supported on the lattice Z𝑚, the case which is most relevant to our
work. Moreover, in the lattice case, if one finds a subset 𝑆 ⊆ [𝑛], such that 𝐴1𝑆 is
very close to some target vector 𝑡 ∈ R𝑚, then, since 𝐴1𝑆 belongs to the lattice as
well, one can actually deduce 𝐴1𝑆 = 𝑡. We prove this statement as a part of the
proof of Theorem 4.3.4.

Theorem 4.3.6. Suppose that period(𝐴) = Z𝑚. Then, under the same conditions
of Theorem 4.3.4 together with exp

(︁
𝜅3𝑝𝑛
80𝑚

)︁
≥ 2𝜎2𝑛2, with probability 1− 𝑒−Ω(𝜅𝑝𝑛),

there is a set 𝑆 of size |𝑆| ∈ [ 1
400𝑝𝑛,

3
400𝑝𝑛] such that 𝐴1𝑆 = 𝑡, provided that 𝑡 ∈ Z𝑚

satisfying the distance bound from Theorem 4.3.4.

Note that since, by (4.4), 𝜅3𝑝𝑛 ≥ poly(𝑚) log(𝑛), the condition exp
(︁
𝜅3𝑝𝑛
80𝑚

)︁
≥

2𝜎2𝑛2 almost does not restrict generality. Again, we state a simplified version of the
result, which does not depend on 𝜎 and 𝜅.
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Theorem 4.3.7. Suppose the entries of𝐴 are uniformly sampled from {𝑖, 𝑖+1, . . . , 𝑖+

𝑘} for 𝑘 ≥ 𝑗 ≥ max(2, |𝑖|). Let 𝑝 ∈ [0, 1] with poly(𝑚) log(𝑛) log(𝑘)
𝑛 ≤ 𝑝 ≤ 1

poly(𝑚) .

Then, with probability 1 − 𝑒−Ω(𝑝𝑛) for every vector 𝑡 ∈ Z𝑛 with ‖𝑡 − 𝑝𝑛𝜇‖ ≤
𝑂
(︁
𝑘

√
𝑝𝑛

log(𝑚)𝑚

)︁
there exists a set 𝑆 of size |𝑆| ∈ [Ω(𝑝𝑛), 𝑂(𝑝𝑛)] such that 𝐴1𝑆 = 𝑡.

4.4 Proving the theorem

We start with a high-level overview of the proof, in which we will limit ourselves to
the discrete case. Recall that by Fourier’s inversion formula (Theorem 4.2.1):

Pr[𝐷 = 𝑡] =

∫︁
𝜃∈𝑉

𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)𝑑𝜃.

In light of this formula, it will be enough to show that this integral is positive for
appropriate 𝑡, for most choices of 𝐴. In this case we will get that Pr [𝐷 = 𝑡] > 0,
which implies the existence of an appropriate subset of columns. We will do so by
showing that most of the mass lies close to the origin and that the integrand has an
exponential decay far from the origin. Our proof consists of the following steps:

1. In Lemma 4.4.5 and Lemma 4.4.6 we show that |𝐷̂(𝜃)| is roughly proportional
to the density function of the probability distribution 𝒩 (0, 1

𝜎2𝑛𝑝𝑟2
𝐼𝑚).

2. In Lemma 4.4.3 we show that for small 𝜃, the argument of 𝐷̂(𝜃) is close to
2𝜋𝑛𝑝⟨𝜃, 𝜇⟩. This allows us to show in Corollary 4.4.4 that as a consequence
𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩) ≥ 1√

2
|𝐷̂(𝜃)| for ‖𝜃‖2 ≤ 𝑟, where:

𝑟 = Ω

⎛⎝min

⎛⎝ 1

𝑝
√
𝑛𝑚𝜎

,
1

3
√
𝑝𝑛
(︁
𝜎
√︀
𝑚/𝜅+ ‖𝜇‖

)︁ , 1

‖𝑡− 𝑝𝑛𝜇‖

⎞⎠⎞⎠ .

Note that a constant fraction of the mass of 𝒩 (0, 1
𝜎2𝑛𝑝𝑟2

𝐼𝑚) lies in the ball of
radius 𝑟 for some 𝑟 = Θ( 1

𝜎
√
𝑛𝑝). By scaling 𝑟 we can make the fraction arbitrarily

close to 1. If we then set 𝒜1 = 𝐵(0, 𝑟), then the integral of |𝐷̂(𝜃)| over 𝒜1 will be
large compared to the same integral over 𝑉 ∖ 𝒜1. Now observe that for large 𝑛 and
appropriate 𝑝, 𝑟 < 𝑟. Hence,

∫︀
𝜃∈𝒜1

𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩) ≥ 1√
2

∫︀
𝜃∈𝒜1

|𝐷̂(𝜃)|𝑑𝜃 is
much larger than

∫︀
𝜃∈𝑉 ∖𝒜1

|𝐷̂(𝜃)|𝑑𝜃. This allows us to show:

Pr[𝐷 = 𝑡] =

∫︁
𝜃∈𝑉

𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)𝑑𝜃 −
∫︁
𝜃∈𝑉 ∖𝒜1

|𝐷̂(𝜃)|𝑑𝜃 > 0.
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In fact, the proof is a bit more involved, as the upper bound that we provide for
|𝐷̂(𝜃)| becomes weaker as ‖𝜃‖ gets larger. For this reason we partition 𝑉 ∖ 𝒜1 into
three sets, 𝒜2, 𝒜3 and 𝒜4, and bound the integral over each of these sets separately.
We set 𝒜2 = [− 1

𝜎 ,
1
𝜎 ]

𝑚 ∖ 𝒜1, 𝒜3 = [−𝑅,𝑅]𝑚 ∖ (𝒜1 ∪ 𝒜2) and 𝒜4 = 𝑉 ∖ (𝒜1 ∪

𝒜2 ∪ 𝒜3) for 𝑅 = 𝑒
𝜅3𝑝𝑛
80𝑚

1
4𝜎𝑛2 .

To establish a rapid enough decay of the Fourier spectrum, we require that the
columns of𝐴 satisfy the (AC) property fromDefinition 4.3.3. To gain a bit of intuition
about Definition 4.3.3, recall that we are working in the Fourier domain. If 𝑋 is a
column of𝐴, it is natural to require that ⟨𝜃,𝑋⟩ be bounded away from integer points.
Otherwise, ⟨𝜃,𝐷⟩ could be close to an integer point with high probability, making
|𝐷̂(𝜃)| large. An extra component in the definition says that the anti-concentration
continues to hold after conditioning on an arbitrary half-space, passing through the
mean. As will become apparent, this is a consequence of our subsampling step.

Let us just note that the (AC) property is not vacuous. In fact Theorems 4.3.5
and 4.3.7 are a direct consequence of the following lemma (see the proof in Section 4.5)
andTheorems 4.3.4 and 4.3.6 (note that by Remark 4.3.2 both cases are approximately
symmetric).

Lemma 4.4.1. Suppose that for 𝑋 = (𝑋1, . . . , 𝑋𝑚) ∼ 𝒟.

1. If 𝑋 is logconcave and isotropic, then 𝑋 is (1, 1
50)-anti-concentrated.

2. If 𝑋𝑖 are i.i.d. uniformly on an integer interval {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑘}, with
𝑘 > 1, then 𝑋 is (𝑘, 1

50)-anti-concentrated.

One may wonder about the necessity of the condition 𝑘 > 1 in Case 2 of
Lemma 4.4.1. A moment of reflection reveals that, if𝑋 is uniform on {0, 1}, then𝑋
is not anti-concentrated, for any 𝜅 > 0, and thus our framework does not directly
apply to this case. However, by taking account of the possible bad cases, our analysis
can be refined to also handle such distributions. We do not pursue this direction
here.

Preprocessing step: Subsampling

We will generate a sub-matrix of 𝐴 by selecting a subset of the columns. This will
ensure that the norm of the columns is bounded, as well as that the norm of their sum
is small. Suppose that the columns of 𝐴 satisfy (AC) with 𝜅, 𝜎 > 0, for 𝑖 = 1, . . . , 𝑛



4.4. Proving the theorem 73

we define random variables 𝑌𝑖 ∈ {0, 1}:

Pr[𝑌𝑘+1 = 1|𝐴1, 𝑌1, . . . 𝐴𝑘, 𝑌𝑘] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ⟨
∑︀𝑘

𝑗=1 𝑌𝑗 (𝐴𝑗 − 𝜇) , 𝐴𝑘+1−𝜇⟩ < 0

and ‖𝐴𝑘+1 − 𝜇‖ ≤ 10𝜎
√︀

𝑚
𝜅

1
2 if ⟨

∑︀𝑘
𝑗=1 𝑌𝑗 (𝐴𝑗 − 𝜇) , 𝐴𝑘+1−𝜇⟩ = 0

and ‖𝐴𝑘+1 − 𝜇‖ ≤ 10𝜎
√︀

𝑚
𝜅

0 else

.

We then select all columns of 𝐴 for which 𝑌𝑖 = 1. For now, let 𝐴′
𝑖 have the law of

column 𝐴𝑖, conditional on being selected, and denote the selected set 𝑆𝐴 = {𝑖 ∈
[𝑛]|𝑌𝑖 = 1}.

Lemma 4.4.2. Suppose that the columns of 𝐴 satisfy (AC) with parameters 𝜅, 𝜎 > 0
and that it is an approximately symmetric distribution, in the sense of Definition 4.3.1.
Then, if 𝑛≫ 𝑚2

𝜅 :

1.

‖𝐴′
𝑖 − 𝜇‖ ≤ 10𝜎

√︂
𝑚

𝜅
. (norm concentration)

2. With probability 1− 𝑒−Ω(𝑛), |𝑆𝐴| ≥ 𝑛
200 ,∑︁

𝑖∈𝑆𝐴

(𝐴𝑖 − 𝜇)(𝐴𝑖 − 𝜇)T 4 2𝑛𝜎2𝐼𝑚, and (matrix concentration)

⃦⃦⃦⃦
⃦⃦∑︁
𝑖∈𝑆𝐴

𝐴𝑖 − 𝜇

⃦⃦⃦⃦
⃦⃦
2

≤ 2𝑛𝑚𝜎2. (concentration)

3. Pr
(︀
𝑑(𝜃T𝐴′

𝑖,Z) ≥ 𝜅min (1, ‖𝜃‖∞𝜎) |𝐴1𝑌1, ..., 𝐴𝑖−1𝑌𝑖−1

)︀
≥ 𝜅

2 , for every 𝜃 ∈
𝑉 , and 𝑖 ∈ [𝑛′].

Proof. The first claim is immediate since we have conditioned the columns on the
event {‖𝐴𝑖−𝜇‖ ≤ 10𝜎

√︀
𝑚
𝜅 }. To show that (matrix concentration) holds, let 𝑍𝑖

law
=

𝐴𝑖|
(︀
‖𝐴𝑖 − 𝜇‖ ≤ 10𝜎

√︀
𝑚
𝜅

)︀
and note,

∑︁
𝑖∈𝑆𝐴

(𝐴𝑖 − 𝜇)(𝐴𝑖 − 𝜇)T =

𝑛∑︁
𝑖=1

𝑌𝑖(𝑍𝑖 − 𝜇)(𝑍𝑖 − 𝜇)T ≤
𝑛∑︁

𝑖=1

(𝑍𝑖 − 𝜇)(𝑍𝑖 − 𝜇)T.

As the random vectors {𝑍𝑖 − 𝜇}𝑛𝑖=1 are mutually independent and (𝑍𝑖 − 𝜇)(𝑍𝑖 −
𝜇)T ⪯ 10𝜎

√︀
𝑚
𝜅 𝐼𝑚 almost surely, (matrix concentration) follows from the matrix

Bernstein inequality [Tro15, Theorem 1.6.2].
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For (concentration), since ⟨
∑︀𝑖−1

𝑗=1 𝑌𝑗(𝐴𝑗 − 𝜇), 𝐴𝑖 − 𝜇⟩ ≤ 0,⃦⃦⃦⃦
⃦⃦∑︁
𝑖∈𝑆𝐴

𝐴𝑖 − 𝜇

⃦⃦⃦⃦
⃦⃦
2

≤
∑︁
1∈𝑆𝐴

‖𝐴𝑖 − 𝜇‖2 = Tr

⎛⎝ 𝑛∑︁
𝑖∈𝑆𝐴

(𝐴𝑖 − 𝜇)(𝐴𝑖 − 𝜇)T
⎞⎠

≤ 2𝑛Tr
(︀
𝜎2𝐼𝑚

)︀
,

where the last inequality is monotonicity of the trace. Recalling that Cov(𝐴𝑖) ⪯
𝜎2𝐼𝑑, the fact that with high probability |𝑆𝐴| ≥ 𝑛

8 follows from Azuma’s inequality.
Indeed, for fixed 𝑖 ∈ [𝑛], by Chebyshev’s inequality,

Pr
(︂
‖𝐴𝑖 − 𝜇‖ > 10𝜎

√︂
𝑚

𝜅

)︂
≤
𝜅E
[︀
‖𝐴𝑖 − 𝜇‖2

]︀
100𝜎2𝑚

=
𝜅Tr (Cov(𝐴𝑖))

100𝜎2𝑚
≤ 𝜅

100
.

Since 𝐴𝑖 has an approximately symmetric law, then, since 𝐴𝑖 is independent from
{𝑌𝑗 , 𝐴𝑗}𝑖−1

𝑗=1, by definition,

Pr

⎛⎝⟨ 𝑖−1∑︁
𝑗=1

𝑌𝑗(𝐴𝑗 − 𝜇), 𝐴𝑖 − 𝜇⟩ ≤ 0

⎞⎠ ≥ 1

4𝑒2
.

Taken together, the above displays imply

Pr (𝑌𝑖 = 1|𝐴1, . . . , 𝐴𝑖−1) ≥
1

100
.

Applying Azuma’s inequality, as in (2.2), we get

Pr
(︁
|𝑆𝐴| ≥

𝑛

200

)︁
= 1− 𝑒−Ω(𝑛).

Finally, we address the (AC) property. For fixed 𝑖 ∈ [𝑛′], let us define 𝜈 =
∑︀𝑖−1

𝑗=1𝐴𝑗𝑌𝑗 .
So,

Pr
(︀
𝑑(𝜃T𝐴′

𝑖,Z) ≥ 𝜅min (1, ‖𝜃‖∞𝜎) |𝐴1𝑌1, ..., 𝐴𝑖−1𝑌𝑖−1

)︀
= Pr

(︂
𝑑(𝜃T𝐴𝑖,Z) ≥ 𝜅min (1, ‖𝜃‖∞𝜎) |⟨𝜈,𝐴𝑖 − 𝜇⟩ ≤ 0 and ‖𝐴𝑖 − 𝜇‖ ≤ 10𝜎

√︂
𝑚

𝜅

)︂
≥ Pr

(︀
𝑑(𝜃T𝐴𝑖,Z) ≥ 𝜅min (1, ‖𝜃‖∞𝜎) |⟨𝜈,𝐴𝑖 − 𝜇⟩ ≤ 0

)︀
− 𝜅

100
≥ 𝜅

2
.

Here, the last inequality follows from Definition 4.3.3, while the first inequality is a
union bound on the anti-concentration event and {‖𝐴𝑖 − 𝜇‖ ≤ 10𝜎

√︀
𝑚
𝜅 }.

In light of the lemma, in the sequel, all computations will be made conditioned
on the high-probability event defined by Lemma 4.4.2, and we will only consider the
first ⌈ 𝑛

200⌉ selected columns. Thus, with a slight abuse of notation, from now on, the
random variables𝐷, 𝐷̂, 𝐴𝑖, etc., will only be considered with respect to the selected
columns. In particular, we will write 𝑛 for |𝑆𝐴|.
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Step I: bounding the argument

We will now show that for small 𝜃, the argument of 𝐷̂(𝜃) is close to 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩. The
main observation in this step, is that, when we fix the columns {𝐴𝑗}𝑛𝑗=1, a Taylor
approximation implies the bound,⃒⃒⃒⃒

⃒
𝑛∑︁

𝑗=1

arg
(︀
E𝑆 [exp(1𝑖∈𝑆2𝜋𝑖𝐴𝑗)]

)︀
− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩

⃒⃒⃒⃒
⃒

≤ 2𝜋𝑝

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=1

⟨𝜃,𝐴𝑗⟩ − 𝑛⟨𝜃, 𝜇⟩

⃒⃒⃒⃒
⃒⃒+ 50𝑝

𝑛∑︁
𝑗=1

|⟨𝜃,𝐴𝑗⟩|3 .

The term on the LHS controls arg(𝐷̂(𝜃)) and the two terms on the RHS can be
bounded with (concentration) and (norm concentration) respectively. We then
prove:

Lemma 4.4.3. With probability 1− 𝑒−Ω(𝑛) over 𝐴, for all ‖𝜃‖ we have,

| arg(𝐷̂(𝜃))− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩| ≤ 4𝜋𝑝‖𝜃‖
√
𝑛𝑚𝜎 + 50𝑝‖𝜃‖3𝑛

(︁
10𝜎

√︀
𝑚/𝜅+ ‖𝜇‖

)︁3
.

Proof. Let 𝑓(𝑥) = arg(𝑝 · exp(2𝜋𝑖 · 𝑥) + (1 − 𝑝)) and observe that 𝑓(𝑥) =

arctan
(︁

𝑝 sin(2𝜋𝑥)
𝑝 cos(2𝜋𝑥)+(1−𝑝)

)︁
. A calculation shows 𝑓(0) = 0, 𝑓 ′(0) = 2𝜋𝑝 and 𝑓 ′′(0) =

0. Hence, we set 𝑔(𝑥) = 𝑓(𝑥)−2𝜋𝑝𝑥 and, with a second-order Taylor approximation
of 𝑓(𝑥) around 𝑥 = 0, we see that for every 𝑥 ≥ 0 there is some 𝑥′ ∈ [0, 𝑥] such
that

𝑔(𝑥) =
𝑑3𝑓

𝑑𝑥3
(𝑥′)𝑥′3.

Another calculation shows that, as long as 𝑝 ≤ 0.1, we have 𝑑3𝑓
𝑑𝑥3 (𝑥

′) ≤ 50𝑝 and
hence |𝑔(𝑥)| ≤ 50|𝑥|3𝑝. Now, note,

arg(E[exp(1𝑗∈𝑆2𝜋𝑖𝑥)]) = arg(𝑝 · exp(2𝜋𝑖 · 𝑥) + (1− 𝑝)) = 𝑓(𝑥).
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Now,⃒⃒⃒
arg(𝐷̂(𝜃))− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩

⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒arg( 𝑛∏︁

𝑗=1

E[exp(1𝑗∈𝑆2𝜋𝑖⟨𝜃,𝐴𝑗⟩)])− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩

⃒⃒⃒⃒
⃒⃒

=

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=1

arg(exp(1𝑗∈𝑆2𝜋𝑖⟨𝜃,𝐴𝑗⟩))− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩

⃒⃒⃒⃒
⃒⃒

=

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=1

𝑓(⟨𝜃,𝐴𝑗⟩)− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩

⃒⃒⃒⃒
⃒⃒ ,

where we understand | · | as referring to distance on the circle. The Taylor approxi-
mation given above shows that, when ‖𝜃‖ ≤ 𝑟, we can bound this distance (where
now the bound will be expressed as a distance between real numbers),⃒⃒⃒⃒
⃒

𝑛∑︁
𝑗=1

𝑓(⟨𝜃,𝐴𝑗⟩)− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩

⃒⃒⃒⃒
⃒ ≤ 2𝜋𝑝

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=1

⟨𝜃,𝐴𝑗⟩ − 𝑛⟨𝜃, 𝜇⟩

⃒⃒⃒⃒
⃒⃒+ 50𝑝

𝑛∑︁
𝑗=1

|⟨𝜃,𝐴𝑗⟩|3

≤ 2𝜋𝑝

⃒⃒⃒⃒
⃒⃒
⟨
𝜃,

𝑛∑︁
𝑗=1

(𝐴𝑗 − 𝜇)

⟩⃒⃒⃒⃒
⃒⃒+ 50𝑝‖𝜃‖3

𝑛∑︁
𝑗=1

‖𝐴𝑗‖32

≤ 2𝜋𝑝‖𝜃‖

⃦⃦⃦⃦
⃦⃦ 𝑛∑︁
𝑗=1

(𝐴𝑗 − 𝜇)

⃦⃦⃦⃦
⃦⃦+ 50𝑝‖𝜃‖3𝑛

(︁
10𝜎

√︀
𝑚/𝜅+ ‖𝜇‖

)︁3
≤ 4𝜋𝑝‖𝜃‖

√
𝑛𝑚𝜎 + 50𝑝‖𝜃‖3𝑛

(︁
10𝜎

√︀
𝑚/𝜅+ ‖𝜇‖

)︁3
where the third inequality follows from (norm concentration) and the final inequality
being a consequence of (concentration).

The following corollary is now immediate.

Corollary 4.4.4. With probability 1− 𝑒−Ω(𝑛), we have:

ℜ
[︁
𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)

]︁
≥ 1√

2
|𝐷̂(𝜃)|,

for all 𝜃 with ‖𝜃‖2 ≤ 𝑟 where

𝑟 = min

⎛⎝ 1

64𝑝
√
𝑛𝑚𝜎

,
1

8 3
√
𝑝𝑛
(︁
10𝜎

√︀
𝑚/𝜅+ ‖𝜇‖

)︁ , 1

16‖𝑡− 𝑝𝑛𝜇‖

⎞⎠ .
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Proof. From Lemma 4.4.3 we see that for all ‖𝜃‖ ≤ 𝑟:

| arg(𝐷̂(𝜃))− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩| ≤ 4𝜋𝑝𝑟
√
𝑛𝑚𝜎 + 50𝑝𝑟3𝑛

(︁
10𝜎

√︀
𝑚/𝜅+ ‖𝜇‖

)︁3
.

Plugging in the upper bounds on 𝑟 and 𝑟3, we get:

| arg(𝐷̂(𝜃))− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩| ≤ 1

16
𝜋 +

1

16
𝜋 ≤ 1

8
𝜋.

Hence,

| arg(𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩))| ≤ | arg(𝐷̂(𝜃))− 2𝜋𝑛𝑝⟨𝜃, 𝜇⟩|
+ | arg(exp(2𝜋⟨𝜃, 𝑡− 𝑝𝑛𝜇⟩𝑖))|

≤ 1

8
𝜋 + 2𝜋 · 𝑟 · 1

16𝑟
≤ 1

4
𝜋.

This implies that:

ℜ[𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)] ≥ cos(𝜋/4)|𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)|,

which proves the corollary since cos
(︀
𝜋
4

)︀
= 1√

2
.

Step II: bounding the integral from below, near the origin

Next, we prove that the modulus of 𝐷̂ is bounded from below, near the origin.

Lemma 4.4.5. The following holds,∫︁
‖𝜃‖≤𝑟

|𝐷̂(𝜃)|𝑑𝜃 ≥ 1− 𝜉𝑚(48𝜋2𝜎2𝑛𝑝𝑟2)

(102
√
𝑛𝑝𝜎)𝑚

√
𝜁 + 1

,

where 𝜉𝑚(𝑡) = Pr[‖𝐺‖2 ≥ 𝑡] for 𝐺 ∼ 𝒩 (0, 𝐼𝑚).

Proof. We have:

|𝐷̂(𝜃)| =
𝑛∏︁

𝑗=1

|E[exp(2𝜋𝑖⟨𝜃,𝐴𝑗⟩)]| =
𝑛∏︁

𝑗=1

|(1− 𝑝) · 1 + 𝑝 exp(2𝜋𝑖⟨𝜃,𝐴𝑗⟩)|

=
𝑛∏︁

𝑗=1

√︁
(1− 𝑝+ 𝑝 cos(2𝜋⟨𝜃,𝐴𝑗⟩))2 + 𝑝2 sin(2𝜋⟨𝜃,𝐴𝑗⟩)2

≥
𝑛∏︁

𝑗=1

(1− 𝑝+ 𝑝 cos(2𝜋⟨𝜃,𝐴𝑗⟩)) ≥ exp(−6𝜋2𝑝
𝑛∑︁

𝑖=1

⟨𝜃,𝐴𝑖⟩2).
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Here the last inequality follows, as long as 𝑝 ≤ 0.01, from the elementary
inequalities,

cos(𝑥) ≥ 1− 𝑥2

ln(1− 𝑥) ≥ −3

2
𝑥 when |𝑥| ≤ 1

2
.

Indeed, it’s enough to consider ⟨𝜃,𝐴𝑗⟩ ∈ [−1, 1], for which,

ln(1− 𝑝+ 𝑝 cos (2𝜋⟨𝜃,𝐴𝑗⟩)) ≥ ln
(︀
1− 𝑝4𝜋2⟨𝜃,𝐴𝑗⟩2

)︀
≥ −6𝜋2𝑝⟨𝜃,𝐴𝑗⟩2.

Hence, by applying the (matrix concentration) property to the obtained bound, we
get,

|𝐷̂(𝜃)| ≥ exp

(︃
−12𝜋2𝑝

(︃
𝑛⟨𝜃, 𝜇⟩2 +

𝑛∑︁
𝑖=1

⟨𝜃,𝐴𝑖 − 𝜇⟩2
)︃)︃

≥ exp
(︀
−24𝜋2𝑛𝑝

(︀
⟨𝜃, 𝜇⟩2 + 𝜎2𝜃𝜃T

)︀)︀
≥ exp

(︀
−24𝜋2𝜃

(︀
𝜇T𝜇+ 𝜎2𝐼𝑚

)︀
𝜃T𝑛𝑝

)︀
.

Let 𝑌 ∼ 𝒩
(︁
0, 1

48𝜋2𝑛𝑝
(𝜇T𝜇+ 𝜎2𝐼𝑚)−1

)︁
and 𝑌 ′ ∼ 𝒩

(︁
0, 1

48𝜋2𝜎2𝑛𝑝
𝐼𝑚

)︁
, then,∫︁

‖𝜃‖≤𝑟
|𝐷̂(𝜃)|𝑑𝜃 ≥

∫︁
‖𝜃‖≤𝑟

exp
(︀
−24𝜋2𝜃

(︀
𝜇T𝜇+ 𝜎2𝐼𝑚

)︀
𝜃T𝑛𝑝

)︀
𝑑𝜃

=
1√︀

det (96𝜋3𝑛𝑝 (𝜇T𝜇+ 𝜎2𝐼𝑚))
Pr [‖𝑌 ‖ ≤ 𝑟]

=
1

(96𝜋3𝑛𝑝)
𝑚
2 (‖𝜇‖2 + 𝜎2)

1
2𝜎𝑚−1

Pr [‖𝑌 ‖ ≤ 𝑟]

≤ 1

(96𝜋3𝑛𝑝)
𝑚
2 (‖𝜇‖2 + 𝜎2)

1
2𝜎𝑚−1

Pr
[︀
‖𝑌 ′‖ ≤ 𝑟

]︀
≤

Pr
[︀
‖𝑌 ′‖2 ≤ 𝑟2

]︀
(96𝜋3𝑛𝑝)

𝑚
2 (‖𝜇‖2 + 𝜎2)

1
2𝜎𝑚−1

=
1− 𝜉𝑚(48𝜋2𝜎2𝑛𝑝𝑟2)

(96𝜋3𝑛𝑝)
𝑚
2 (‖𝜇‖2 + 𝜎2)

1
2𝜎𝑚−1

.
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Step III: Exponential decay of the Fourier spectrum

To show that the Fourier spectrum decays rapidly, we employ an 𝜀-net argument
over a very large box. The main difficulty is that ⟨𝜃,𝐷⟩ can be close to an integer,
irregardless of the value ‖𝜃‖. Our anti-concentration assumption allows us to avoid
this. Specifically, Item 3 in Lemma 4.4.2 implies that for any given 𝜃 in a dense
enough net, we can expect many columns to satisfy that ⟨𝜃,𝐴𝑖⟩ is far from any
integer point. Formally, we prove:

Lemma 4.4.6. With probability 1− 𝑒−Ω(𝜅𝑛), we have

|𝐷̂(𝜃)| ≤ exp
(︂
− 1

80
𝜅3𝑛(1− 𝑝)𝑝𝜋2 min

(︀
1, ‖𝜃‖2∞𝜎2

)︀)︂
,

for 𝜃 ∈ 𝑉, where 𝑉 is the fundamental domain, as in (4.2), and

𝑉 := [−𝑅,𝑅]𝑚 ∩ 𝑉.

Proof. We begin with a technical calculation which will help control the size of the
net. Observe that (4.4) implies

160𝑚 ≤
√
𝜅𝑛 =⇒

√︂
𝑚

𝜅
≤ 1

2

√︂
𝜅𝑛

80𝑚
=⇒

√︂
𝑚

𝜅
≤ 1

2
𝑒

𝜅𝑛
80𝑚 ,

and similarly,
‖𝜇‖
𝜎
≤ 1

2
𝑒

𝜅𝑛
80𝑚 .

Now, let 𝑁 be an 𝜀-net of 𝑉 for 𝜀 = 1

2𝑛2
(︁
𝜎
√︀

𝑚/𝜅+‖𝜇‖
)︁ . Standard arguments

show that one can take |𝑁 | ≤
(︁√︀

𝑚
𝜅 + ‖𝜇‖

𝜎

)︁𝑚
𝑒

𝜅
80

𝑛 ≤ 𝑒
𝜅
40

𝑛, when 𝑛 is large enough.

Here we have used the bound,
√︀

𝑚
𝜅 + ‖𝜇‖

𝜎 ≤ 𝑒
𝜅𝑛
80𝑚 , established above.

For 𝜃 ∈ 𝑁 , define

𝜙(𝜃) =
𝜅

4
min (1, ‖𝜃‖∞𝜎) and 𝐸(𝜃) = {𝑗 : 𝑑(⟨𝜃,𝐴𝑗⟩,Z) ≥ 𝜙(𝜃)}.

If we fix 𝜃 and set 𝑋𝑖 := 1𝑖∈𝐸(𝜃) then |𝐸(𝜃)| =
𝑛∑︀

𝑖=1
𝑋𝑖. The statement of Item 3 in

Lemma 4.4.2 is E [𝑋𝑖|𝑋1, . . . , 𝑋𝑖−1] ≥ 𝜅
2 . Applying Azuma’s inequality (2.2), we

get:

Pr
[︁
|𝐸(𝜃)| ≤ 𝜅

4
𝑛
]︁
≤ exp

(︁
−𝜅
8
𝑛
)︁
.
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In this case, by the union bound,

P
(︁
∃𝜃 ∈ 𝑁 : |𝐸(𝜃)| ≤ 𝜅

4
𝑛
)︁
≤ 𝑒−

𝜅
16

𝑛.

If 𝑗 ∈ 𝐸(𝜃), since 𝜙(𝜃) ≤ 1
4 , we have:

|E𝑆 [exp(1𝑗∈𝑆 · 2𝜋𝑖⟨𝜃,𝐴𝑗⟩)]| =
√︁
(1− 𝑝+ 𝑝 cos(2𝜋⟨𝜃,𝐴𝑗⟩))2 + 𝑝2 sin(2𝜋⟨𝜃,𝐴𝑗⟩)2

=
√︁
1 + 2𝑝2 − 2𝑝+ 2(1− 𝑝)𝑝 cos(2𝜋⟨𝜃,𝐴𝑗⟩)

≤
√︀
1 + 2𝑝2 − 2𝑝+ 2(1− 𝑝)𝑝 cos(2𝜋𝜙(𝜃))

≤
√︀
1− 2(1− 𝑝)𝑝(2𝜋𝜙(𝜃))2/5

≤ 1− (1− 𝑝)𝑝(2𝜋𝜙(𝜃))2/5

≤ 1− 4

5
(1− 𝑝)𝑝𝜋2𝜅

2

16
min

(︀
1, ‖𝜃‖2∞𝜎2

)︀
.

Observe that |E𝑆 [exp(1𝑗∈𝑆2𝜋𝑖𝑥)]| =
√︀

(1− 𝑝+ 𝑝 cos(2𝜋𝑥))2 + 𝑝2 sin(2𝜋𝑥)2 is
4𝜋𝑝-Lipschitz in 𝑥, as long as 𝑝 ≤ 1

4 . Take an arbitrary 𝜃 ∈ 𝑉 and let 𝜃′ be the
closest point in 𝑁 . Recall that max

𝑖
‖𝐴𝑖‖ ≤ 10𝜎

√︀
𝑚
𝜅 + ‖𝜇‖, which follows from

Eq. (norm concentration). So, by our choice of 𝜀 and with the Cauchy-Schwartz
inequality,

|⟨𝜃 − 𝜃′, 𝐴𝑗⟩| ≤
1

2𝑛2
.
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Thus:

|𝐷̂(𝜃)| =
𝑛∏︁

𝑗=1

|E𝑆 [exp(1𝑗∈𝑆2𝜋𝑖⟨𝜃,𝐴𝑗⟩)]|

≤
∏︁

𝑗∈𝐸(𝜃′)

(︀⃒⃒
E𝑆 [exp(1𝑗∈𝑆2𝜋𝑖⟨𝜃′, 𝐴𝑗⟩)]

⃒⃒
+ 4𝜋𝑝|⟨𝜃 − 𝜃′, 𝐴𝑗⟩|

)︀
≤

∏︁
𝑗∈𝐸(𝜃′)

(︂
1− 4

5
(1− 𝑝)𝑝𝜋2𝜅

2

16
min

(︀
1, ‖𝜃′‖2∞𝜎2

)︀
+ 4𝜋𝑝|⟨𝜃 − 𝜃′, 𝐴𝑗⟩|

)︂

≤ exp

⎛⎝−4

5
(1− 𝑝)𝑝𝜋2𝜅

2

16
|𝐸(𝜃′)|min

(︀
1, ‖𝜃′‖2∞𝜎2

)︀
+ 4𝜋𝑝

𝑛∑︁
𝑗=1

|⟨𝜃 − 𝜃′, 𝐴𝑗⟩|

⎞⎠
≤ 𝑒

2𝜋
𝑛 exp

(︂
−1

5

𝜅3

16
𝑛(1− 𝑝)𝑝𝜋2 min

(︀
1, ‖𝜃′‖2∞𝜎2

)︀)︂
≤ 𝑒

2𝜋
𝑛 exp

(︂
−1

5

𝜅3

16
𝑛(1− 𝑝)𝑝𝜋2 min

(︀
1, (1− 𝜀)2‖𝜃‖2∞𝜎2

)︀)︂
≤ exp

(︂
− 1

80
𝜅3𝑛(1− 𝑝)𝑝𝜋2 min

(︀
1, ‖𝜃‖2∞𝜎2

)︀)︂
,

where the last inequality holds, since by (4.4), 𝜅3𝑝𝑛 ≥ 1020.

By properly integrating the inequality, we have thus obtained:

Lemma 4.4.7. With probability 1− 𝑒−Ω(𝜅𝑛), the following inequality holds:∫︁
𝒜2∩𝑉

|𝐷̂(𝜃)|𝑑𝜃 ≤
(︂

5𝑚

𝜅3𝑝𝑛𝜎2

)︂𝑚
2

𝜉𝑚

(︂
𝑟2𝜅3𝑝𝑛𝜎2

5𝑚

)︂

where

𝒜2 =

{︂
‖𝜃‖∞ < min

(︂
𝑒

𝜅3𝑝𝑛
80𝑚

1

4𝜎𝑛2
,
1

𝜎

)︂}︂
∩ {‖𝜃‖ ≥ 𝑟}

and 𝜉𝑚(𝑡) = Pr[‖𝐺‖2 ≥ 𝑡] for 𝐺 ∼ 𝒩 (0, 𝐼𝑚).

Proof. From Lemma 4.4.6, when 𝑝 < 0.1, and 𝜎‖𝜃‖∞ ≤ 1, we have

|𝐷(𝜃)| ≤ exp
(︂
−𝜅

3𝑝𝑛𝜎2‖𝜃‖2

10𝑚

)︂
.
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Now, if 𝑌 ∼ 𝒩 (0, 𝐼𝑚):∫︁
𝒜2

|𝐷(𝜃)|𝑑𝜃 ≤
∫︁

‖𝜃‖≥𝑟

exp
(︂
−𝜅

3𝑝𝑛𝜎2‖𝜃‖2

10𝑚

)︂
𝑑𝜃

=

(︂
5𝑚

𝜅3𝑝𝑛𝜎2

)︂𝑚
2

𝜉𝑚

(︂
𝑟2𝜅3𝑝𝑛𝜎2

5𝑚

)︂
.

Lemma 4.4.8. With probability 1− 𝑒−Ω(𝜅𝑛), the following inequality holds:∫︁
𝒜3∩𝑉

|𝐷̂(𝜃)|𝑑𝜃 ≤ 1

𝜎𝑚𝑛2𝑚
exp

(︂
−𝜅

3𝑝𝑛

80

)︂
,

where 𝒜3 ⊆ [−𝑅,𝑅]𝑚 ∖ [ 1𝜎 ,
1
𝜎 ]

𝑚 for 𝑅 = 𝑒
𝜅3𝑝𝑛
80𝑚

1
4𝜎𝑛2 .

Proof. For all 𝜃 ∈

[︃
− 𝑒

𝜅3𝑝𝑛
80𝑚

4𝜎𝑛2 ,
𝑒
𝜅3𝑝𝑛
80𝑚

4𝜎𝑛2

]︃𝑚
with ‖𝜃‖∞𝜎 ≥ 1, Lemma 4.4.6 implies,

|𝐷(𝜃)| ≤ exp
(︂
−𝜅

3𝑝𝑛

40𝑚

)︂
.

So: ∫︁
𝒜3

|𝐷(𝜃)|𝑑𝜃 ≤
∫︁

𝑒
𝜅3𝑝𝑛
80𝑚

2𝜎𝑛2 ≥‖𝜃‖∞

exp
(︂
−𝜅

3𝑝𝑛

40𝑚

)︂
𝑑𝜃

=
1

𝜎𝑚𝑛2𝑚
exp

(︂
𝜅3𝑝𝑛

80𝑚

)︂𝑚

· exp
(︂
−𝜅

3𝑝𝑛

40

)︂
=

1

𝜎𝑚𝑛2𝑚
exp

(︂
−𝜅

3𝑝𝑛

80

)︂
.

Proving Theorem 4.3.4

Now we will finally prove Theorems 4.3.4 and 4.3.6. First we prove the following
lemma that provides a lower bound on the integral from the Fourier Inversion
Theorem (Theorem 4.2.1).
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For the continuous case we require one extra step to control the Fourier transform
outside the domain of Lemma 4.4.7. To deal with continuous distributions, we define
𝐺 ∼ 𝒩 (0, 𝛾𝐼𝑚) for 𝛾 to be determined later and𝐻 = 𝐷 +𝐺. For the discrete case
we simply define 𝐺 = 0.

Note that we have 𝑅̂(𝜃) = 𝑔(‖𝜃‖), where in the continuous case we have

𝑔(‖𝜃‖) = 𝑒−
‖𝜃‖2𝛾

2 , whereas in the discrete case we have 𝑔(‖𝜃‖) = 1. In both
cases 𝑔 is a decreasing function on R≥0. By the multiplication-convolution theorem
(Theorem 4.2.2), we have 𝐻̂(𝜃) = 𝐷̂(𝜃) · 𝑅̂(𝜃) = 𝑔(‖𝜃‖)𝐷̂(𝜃).

We will now split up the domain of integration into four sets 𝒜1 = 𝐵𝑚(0, 𝑟),
𝒜2 = [− 1

𝜎 ,
1
𝜎 ]

𝑚∖𝒜1,𝒜3 = [𝑅,𝑅]𝑚∖(𝒜1∪𝒜2),𝒜4 = {𝜃 : ‖𝜃‖∞ ≥ 𝑅}∖(𝒜1∪𝒜2),

for 𝑅 = 𝑒
𝜅3𝑝𝑛
80𝑚

1
4𝜎𝑛2 . If we define val(𝑆) =

∫︀
𝑉 ∩𝑆 𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)𝑑𝜃, we have:

Pr[𝐻 = 𝑡] ≥ 𝑔(𝑟)(ℜ[val(𝒜1)]− | val(𝒜2)| − | val(𝒜3)|)−
∫︁
𝒜4

|𝑅̂(𝜃)|𝑑𝜃.

Choosing 𝑟 To be able to provide an appropriate lower bound we will choose 𝑟
such that val(𝒜2) ≤ 1

8 val(𝒜1).

Lemma 4.4.9. When

𝑟 =

√︃
15𝑚

𝜅3𝑝𝑛𝜎2

(︂
ln(16

√︀
𝜁 + 1) +

𝑚

2
ln
(︂
105𝑚

𝜅3

)︂)︂
and (4.5)

𝑝𝑛 ≥ 60𝑚

𝜅3𝜎

(︂
ln(16

√︀
𝜁 + 1) +

𝑚

2
ln
(︂
105𝑚

𝜅3

)︂)︂
. (4.6)

We have: ∫︁
𝒜1

|𝐷̂(𝜃)|𝑑𝜃 =
∫︁
‖𝜃‖≤𝑟

|𝐷̂(𝜃)|𝑑𝜃 ≥
(︂

1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

(4.7)

and in particular | val(𝒜2)| ≤ 1
8 | val(𝒜1)|.

Proof. Equation (4.6) implies that 𝑟 ≤ 1
2 , so that 𝐵𝑚(0, 𝑟) ⊆ 𝑉 . In Lemma 4.4.5, we

have shown that in this case∫︁
𝒜1

|𝐷̂(𝜃)|𝑑𝜃 =
∫︁
‖𝜃‖≤𝑟

|𝐷̂(𝜃)|𝑑𝜃 ≥ 1− 𝜉𝑚(48𝜋2𝜎2𝑛𝑝𝑟2)

(102
√
𝑛𝑝𝜎)𝑚

√
𝜁 + 1

, (4.8)

where 𝜉𝑚(𝑡) = Pr[‖𝐺‖2 ≥ 𝑡]. for 𝐺 ∼ 𝒩 (0, 𝐼𝑚). In Lemma 4.4.7, we have shown
that

val(𝒜2) ≤
(︂

5𝑚

𝜅3𝑝𝑛𝜎2

)︂𝑚
2

𝜉𝑚

(︂
𝑟2𝜅3𝑝𝑛𝜎2

5𝑚

)︂
.
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We will set 𝑟 such that
∫︀
𝒜1
|𝐷̂(𝜃)|𝑑𝜃 ≥ 8| val(𝒜2)|. Plugging in the previous bounds,

we see that it is enough to set 𝑟 to satisfy:∫︀
𝒜1
|𝐷̂(𝜃)|𝑑𝜃
| val(𝒜2)|

≥
(︂

𝜅3

104 · 5𝑚

)︂𝑚
2 1− 𝜉𝑚(48𝜋2𝜎2𝑛𝑝𝑟2)
√
𝜁 + 1𝜉𝑚

(︁
𝑟2𝜅3𝑝𝑛𝜎2

5𝑚

)︁
≥
(︂

𝜅3

105𝑚

)︂𝑚
2 1− 𝜉𝑚(48𝜋2𝜎2𝑛𝑝𝑟2)
√
𝜁 + 1𝜉𝑚

(︁
𝑟2𝜅3𝑝𝑛𝜎2

5𝑚

)︁ ≥ 8.

Rewriting the last inequality we see that we need to pick 𝑟 to satisfy:

1− 𝜉𝑚(48𝜋2𝜎2𝑛𝑝𝑟2)

𝜉𝑚

(︁
𝑟2𝜅3𝑝𝑛𝜎2

5𝑚

)︁ ≥ 8
√︀
𝜁 + 1

(︂
105𝑚

𝜅3

)︂𝑚
2

. (4.9)

Observe that by the Markov bound we have 𝜉𝑚(2𝑚) ≤ E[𝐺]
2𝑚 = 𝑚

2𝑚 = 1
2 . So, in order

to keep the numerator of the left hand side at least 1
2 :

𝑟 ≥ 𝑚

8𝜋𝜎
√
𝑛𝑝
. (4.10)

To lower bound the denominator, we note that by Lemma 2.3.3 𝜉𝑚(𝑥) ≤ exp(−𝑥/3)
as long as 𝑥 ≥ 7𝑚. This implies that to satisfy Eq. (4.9), we can set

𝑟 =

√︃
15𝑚

𝜅3𝑝𝑛𝜎2

(︂
ln(16

√︀
𝜁 + 1) +

𝑚

2
ln
(︂
105𝑚

𝜅3

)︂)︂
. (4.11)

Observe that this choice of 𝑟 does indeed satisfy Eq. (4.10).

Lemma 4.4.10. We have ℜ[val(𝒜1)] ≥ 1√
2
| val(𝒜1)|, as long as

𝑝 ≤ 𝜅3

216𝑚2
(︁
ln(16

√
𝜁 + 1) + 𝑚

2 ln
(︁
105𝑚
𝜅3

)︁)︁
𝑝𝑛 ≥ 1010𝑚6(𝜁 + 1)3

𝜅12

(︂
ln(16

√︀
𝜁 + 1) +

𝑚

2
ln
(︂
105𝑚

𝜅3

)︂)︂3

‖𝑡− 𝑝𝑛𝜇‖ ≤

⎯⎸⎸⎷ 𝜅3𝑝𝑛𝜎2

212𝑚
(︁
ln(16

√
𝜁 + 1) + 𝑚

2 ln
(︁
105𝑚
𝜅3

)︁)︁ .
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Proof. As in Corollary 4.4.4, let:

𝑟 = min

⎛⎝ 1

64𝑝
√
𝑛𝑚𝜎

,
1

8 3
√
𝑝𝑛𝜎

(︁
10
√︀
𝑚/𝜅+

√
𝜁
)︁ , 1

16‖𝑡− 𝑝𝑛𝜇‖

⎞⎠ .

When all assumptions are satisfied, we have 𝑟 ≤ 𝑟 and hence 𝒜1 ⊆ 𝐵(0, 𝑟). Then
by Corollary 4.4.4 we have:

ℜ[val(𝒜1)] =

∫︁
{‖𝜃‖≤𝑟}∩𝑆

ℜ
[︁
𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)

]︁
𝑑𝜃

≥ 1√
2

∫︁
{‖𝜃‖≤𝑟}∩𝑆

|𝐷̂(𝜃) exp(−2𝜋𝑖⟨𝜃, 𝑡⟩)|𝑑𝜃 ≥ 1√
2
| val(𝒜1)|.

Lemma 4.4.11. We have | val(𝒜3)| ≤ 1
8 | val(𝒜1)|, as long as 𝑛 ≥ 100 and 𝑝𝑛 ≥

8𝜅−3 ln(𝜁 + 1).

Proof. By Lemma 4.4.8 we have:

| val(𝒜3)| ≤
(︂

1

𝜎2𝑛4

)︂𝑚
2

exp
(︂
−𝜅

3𝑝𝑛

80

)︂
.

By Eq. (4.8), we have | val(𝒜1)| ≥
(︁

1
104𝑛𝑝𝜎2

)︁𝑚
2 1

2
√
𝜁+1

. So if 𝑛 ≥ 100 and 𝑝𝑛 ≥
8𝜅−3 ln(𝜁 + 1), we have:

| val(𝒜3)| ≤
(︂

1

106𝜎2𝑛

)︂𝑚
2 1

2
√
𝜁 + 1

.

This proves the result.

Bounding the integral over𝒜4 In the discrete setting we will bound the integral
over 𝒜4 by showing that 𝒜4 ∩ 𝑉 = ∅. To bound val(𝒜4) in the continuous setting
we put 𝛾 = 𝑛/𝑅2.

Lemma 4.4.12. In the continuous setting, we have
∫︀
𝒜4
|𝑅̂(𝜃)|𝑑𝜃 ≤ 1

8𝑔(𝑟)| val(𝒜1)|
and 𝑔(𝑟) ≥ 1

2 , as long as 𝑝𝑛 ≥
40𝑚
𝜅3 ln(10

6𝑛4𝑚3
√
𝜁+1

𝜅6𝑝
) and 𝑛 ≥ max(7𝑚, 103 ln(2(𝜁+

1))).
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Proof. We have:∫︁
𝒜4

|𝑅̂(𝜃)|𝑑𝜃 =
∫︁
𝒜4

|𝑔(‖𝜃‖)𝐷̂(𝜃)|𝑑𝜃 ≤
∫︁
𝒜4

|𝑅̂(𝜃)|𝑑𝜃 =
∫︁
𝒜4

𝑔(‖𝜃‖)𝑑𝜃

≤
∫︁

‖𝜃‖≥𝑅

𝑒
−𝛾‖𝜃‖2

2 𝑑𝜃 =

(︂
2𝜋

𝛾

)︂𝑚
2

𝜓𝑚

(︀
𝛾𝑅2

)︀
= (2𝜋𝑅2)𝑚/2𝜓𝑚 (𝑛)

≤ (2𝜋𝑅2)𝑚/2𝑒−𝑛/3 (by Lemma 2.3.3)

=

(︂
2𝜋

16𝜎2𝑛5

)︂𝑚
2

𝑒
𝜅3𝑝𝑛
80

−𝑛
3

≤
(︂

1

2𝜎2𝑛5

)︂𝑚
2

𝑒−
1
6
𝑛.

By Eq. (4.8) we have:

| val(𝒜1)| ≥
(︂

1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

.

This implies that for 𝑛 ≥ 103 ln(2(𝜁 + 1)),
∫︀
𝒜4
|𝑅̂(𝜃)|𝑑𝜃 ≤ 1

16 | val(𝒜1)|. Note that

𝑔(𝑟) = exp(−𝑛 · 𝑟2

𝑅2 ). When, 𝑝𝑛 ≥ 40𝑚
𝜅3 ln(10

6𝑛4𝑚3
√
𝜁+1

𝜅6𝑝
) we have:

𝑛 · 𝑟
2

𝑅2
≤ exp(−𝜅

3𝑝𝑛

40𝑚
)
103𝑛4𝑚

𝜅3𝑝

(︂
ln(16

√︀
𝜁 + 1) +

𝑚

2
ln
(︂
105𝑚

𝜅3

)︂)︂
≤ exp(−𝜅

3𝑝𝑛

40𝑚
)
105𝑛4𝑚3

√
𝜁 + 1

𝜅6𝑝
≤ 1

2
.

Hence, 𝑔(𝑟) ≥ exp(−1
2) ≥

1
2 , which proves the lemma.

Putting it all together

Lemma 4.4.13. We have:

Pr
[︂
|𝑆| /∈

[︂
1

2
𝑝𝑛,

3

2
𝑝𝑛

]︂]︂
≤ 2 exp(−𝑝𝑛/12).

Proof. Using the multiplicative Chernoff bound we can see that:

Pr
[︂
|𝑆| /∈

[︂
1

2
𝑝𝑛,

3

2
𝑝𝑛

]︂]︂
= Pr

[︂
||𝑆| − E[|𝑆|]| ≥ 1

2
E[|𝑆|]

]︂
≤ 2 exp(−𝑝𝑛/12).
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Proof of Theorem 4.3.4. Since the columns of 𝐴 are now absolutely continuous we
have 𝑉 = R𝑚. From Eqs. (4.3) and (4.4) it follows that the conditions of Lemmas 4.4.9
to 4.4.13 are satisfied. Hence, we have:

ℜ[val(𝒜1)]− | val(𝒜2)| − | val(𝒜3)| ≥
1√
2
| val(𝒜1)| −

1

8
| val(𝒜1)| −

1

8
| val(𝒜1)|

≥ 1

4
| val(𝒜1)|.

By the Fourier inversion formula (Theorem 4.2.1) this shows:

𝑓𝐻(𝑡) ≥ 𝑔(𝑟)(ℜ[val(𝒜1)]− | val(𝒜2)| − | val(𝒜3)|)−
∫︁
𝒜4

|𝑅̂(𝜃)|𝑑𝜃

≥ 1

8
𝑔(𝑟)| val(𝒜1)| ≥

1

16
| val(𝒜1)|.

The previous inequality holds for all 𝑡 with ‖𝑡− 𝑝𝜇‖ ≤ Δ for

Δ :=

⎯⎸⎸⎷ 𝜅3𝑝𝑛𝜎2

𝑚
(︁
ln(16

√
𝜁 + 1) + 𝑚

2 ln
(︁
105𝑚
𝜅3

)︁)︁ .
By the lower bound on 𝑝 in (4.4), one can see that √𝛾𝑛 = exp

(︁
−𝜅3𝑝𝑛

80𝑚

)︁
𝜎𝑛2 ≤ 1

2Δ.
In particular, if we choose 𝑡 such that ‖𝑡 − 𝑝𝜇‖ ≤ √𝛾𝑛, then the previous bound
holds for all 𝑡′ with ‖𝑡′ − 𝑡‖ ≤ 1

2Δ, as ‖𝑡′ − 𝑝𝜇‖ ≤ Δ. Hence:

Pr [‖𝐻 − 𝑡‖ ≤ √𝛾𝑛] ≥
∫︁

𝐵(𝑡,
√
𝛾𝑛)

𝑓𝐻(𝑡′)𝑑𝑡′ ≥ 1

16
| val(𝒜1)|

∫︁
𝐵(𝑡,

√
𝛾𝑛)

1𝑑𝑡′

≥
(︀√
𝜋𝛾𝑛

)︀𝑚
16Γ(𝑚2 + 1)

| val(𝒜1)| ≥
(︀√
𝜋𝛾𝑛

)︀𝑚
16Γ(𝑚2 + 1)

(︂
1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

.

Now, recall that 𝐻 = 𝐷 + 𝐺, where 𝐺 ∼ 𝒩 (0, 𝛾𝐼𝑚). By (4.4), 𝑛 > 106𝑚3

𝜅9 .
Hence, by applying Lemma 2.3.3 again,

𝑃𝑟 (‖𝐻 −𝐷‖ ≥ √𝛾𝑛) = Pr (‖𝐺‖ ≥ √𝛾𝑛) ≤ Pr (‖𝐺‖ ≥ √𝛾𝑝𝑛) ≤ 𝑒−
𝑝𝑛
3

≤
(︀√
𝜋𝛾𝑛

)︀𝑚
32Γ(𝑚2 + 1)

(︂
1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

.

We conclude that:

Pr [‖𝐷 − 𝑡‖ ≤ 2
√
𝛾𝑛] ≥ Pr [‖𝐻 − 𝑡‖ ≤ √𝛾𝑛]− Pr (‖𝐻 −𝐷‖ ≥ √𝛾𝑛)

≥
(︀√
𝜋𝛾𝑛

)︀𝑚
32Γ(𝑚2 + 1)

(︂
1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

.
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By Lemma 4.4.13 we know that |𝑆| /∈ [12𝑝𝑛,
3
2𝑝𝑛] ≤ 2 exp(−𝑝𝑛/12). By the lower

bound on 𝑝𝑛 in Eq. (4.4) we can see that:

Pr

[︃
‖𝐷 − 𝑡‖ ≤ √𝛾𝑛 ∧ |𝑆| ∈

[︂
1

2
𝑝𝑛,

3

2
𝑝𝑛

]︂]︃

≥ Pr [‖𝐷 − 𝑡‖ ≤ √𝛾𝑛]− Pr
[︂
|𝑆| /∈

[︂
1

2
𝑝𝑛,

3

2
𝑝𝑛

]︂]︂
≥
(︀√
𝜋𝛾𝑛

)︀𝑚
32Γ(𝑚2 + 1)

(︂
1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

− 2 exp(−𝑝𝑛/12)

≥
(︀√
𝜋𝛾𝑛

)︀𝑚
64Γ(𝑚2 + 1)

(︂
1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

.

As this probability is positive, there must be a choice of 𝑥 ∈ {0, 1}𝑛 such that
‖𝐴𝑥− 𝑡‖ ≤ 2

√
𝑛, such that the support 𝑆 of 𝑥 satisfies |𝑆| ∈ [12𝑝𝑛,

3
2𝑝𝑛].

Proof of Theorem 4.3.6. Just like in the proof of Theorem 4.3.4 we have:

Pr[𝐷 = 𝑡] ≥ ℜ[val(𝒜1)]− | val(𝒜2)| − | val(𝒜3)| − | val(𝒜4)|

≥ 1

4
| val(𝒜1)| − | val(𝒜4)|.

From Eq. (4.4) it follows that 2𝜎𝑛2 ≤ 𝑒
𝜅3𝑝𝑛
80𝑚 ,[︂

−1

2
,
1

2

]︂𝑚
= 𝑉 ⊆

{︂
‖𝜃‖∞ < 𝑒

𝜅3𝑝𝑛
80𝑚

1

4𝜎𝑛2

}︂
.

Hence val(𝒜4) = 0. So, like in the proof of Theorem 4.3.4, we have:

Pr[𝐷 = 𝑡] ≥ 1

4
| val(𝒜1)| ≥

(︂
1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

.

Similarly, we have:

Pr

[︃
𝐷 = 𝑡 ∧ |𝑆| ∈

[︂
1

2
𝑝𝑛,

3

2
𝑝𝑛

]︂]︃

≥ Pr [‖𝐷 − 𝑡‖ ≤ √𝛾𝑛]− Pr
[︂
|𝑆| /∈

[︂
1

2
𝑝𝑛,

3

2
𝑝𝑛

]︂]︂
≥
(︂

1

104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

− 2 exp(−𝑝𝑛/12)

≥
(︂

1

2 · 104𝑛𝑝𝜎2

)︂𝑚
2 1

2
√
𝜁 + 1

.
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As this probability is positive, there must be a choice of 𝑥 ∈ {0, 1}𝑛 such that
‖𝐴𝑥− 𝑡‖ ≤ 2

√
𝑛, such that the support 𝑆 of 𝑥 satisfies |𝑆| ∈ [12𝑝𝑛,

3
2𝑝𝑛].

4.5 Anti-concentration results

Throughout this section we use the notation,

𝑑(𝑥,Z) := min
𝑧∈Z
|𝑥− 𝑧|.

Our goal in this section is to prove that Definition 4.3.3 is valid for a large family of
distributions and prove Lemma 4.4.1.

Distributions with bounded densities

We begin with the following simple 1-dimensional lemma.

Lemma 4.5.1. Let 𝑋 be a random variable with E [𝑋] = 𝜇 and Var(𝑋) = 𝜎2.
Suppose that 𝑋 has a density 𝜌, which satisfies,

𝜌(𝑥) ≤ 𝐶

𝜎
,

for some 𝐶 > 0. Then, for every 𝜀 > 0, then for 𝛿 = 𝜀2

12𝐶 ,

Pr (𝑑(𝑋,Z) ≥ 𝛿min (1, 𝜎)) ≥ 1− 𝜀.

Proof. By Chebyshev’s inequality Pr
(︀
|𝑋 − 𝜇| ≥ 2

𝜀𝜎
)︀
≤ 𝜀2

4 . Define 𝜎′ = min(1, 𝜎)
and note that if Z+ [−𝛿𝜎′, 𝛿𝜎′] :=

⋂︀
𝑧∈Z

[𝑧 − 𝛿𝜎′, 𝑧 + 𝛿𝜎′], then, for any 𝛿 > 0,

Pr
(︂
𝑋 ∈

[︂
𝜇− 2

𝜀
𝜎, 𝜇+

2

𝜀
𝜎

]︂⋂︁(︀
Z+

[︀
−𝛿𝜎′, 𝛿𝜎′

]︀)︀)︂
≤

∑︁
𝑧∈Z,|𝑧−𝜇|< 2

𝜀
𝜎

𝑧+𝛿𝜎′∫︁
𝑧−𝛿𝜎′

𝜌(𝑥)𝑑𝑥.

If 𝜎 ≥ 1, since 𝜌(𝑥) ≤ 𝐶
𝜎 ,

∑︁
𝑧∈Z,|𝑧−𝜇|< 2

𝜀
𝜎

𝑧+𝛿∫︁
𝑧−𝛿

𝜌(𝑥)𝑑𝑥 ≤ 6

𝜀
𝜎 · 2𝛿 · 𝐶

𝜎
.
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We now choose 𝛿 = 𝜀2

12𝐶 , so the right hand side becomes smaller than 𝜀
2 , and

Pr (𝑑(𝑋,Z) ≥ 𝛿min (1, 𝜎))

≥ Pr
(︁
|𝑋 − 𝜇| < 𝜀

2
𝜎
)︁
− Pr

(︁
𝑋 ∈ [𝜇− 𝛿, 𝜇+ 𝛿]

⋂︁
(Z+ [−𝛿, 𝛿])

)︁
≥ 1− 𝜀2

4
− 𝜀

2
> 1− 𝜀.

If 𝜎 < 1, then 𝜎′ = 𝜎 and

∑︁
𝑧∈Z,|𝑧−𝜇|< 2

𝜀
𝜎

𝑧+𝛿𝜎∫︁
𝑧−𝛿𝜎

𝜌(𝑥)𝑑𝑥 ≤ 6

𝜀
· 2𝛿𝜎 · 𝐶

𝜎
.

We then arrive at the same conclusion.

We now prove our anti-concentration result measures with an appropriate
density bound.

Lemma 4.5.2. Let 𝑋 be a random vector in R𝑚 with Σ := Cov (𝑋). For 𝜃 ∈ R𝑚 let
𝜌𝜃 stand for the density of ⟨𝑋, 𝜃⟩. Assume that there is a constant 𝐶 > 1, satisfying
the following three conditions:

• For every 𝜃 ∈ R𝑚, 𝑥 ∈ R, 𝜌𝜃(𝑥) ≤ 𝐶√︀
Var(⟨𝑋,𝜃⟩)

.

• For every 𝜈 ∈ R𝑚, Pr (⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩) ≥ 1
𝐶 .

• ‖Σ‖op‖Σ−1‖op ≤ 𝐶 .

Then, for any 𝜃, 𝜈 ∈ R𝑚,

Pr
[︂
𝑑(𝜃T𝑋,Z) ≥ 1

48𝐶3
min (1, ‖𝜃‖∞𝜎) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩

]︂
≥ 1

2𝐶
,

where 𝜎 := ‖Σ‖op. In other words, 𝑋 satisfies (AC) with 𝜎 and 𝜅 = 1
48𝐶3 .

Before proving the result, we note that by Lemmas 2.3.8 and 2.3.7, Lemma 4.5.2
applies to isotropic logconcave distributions and hence proves the first half of
Lemma 4.4.1.

Proof. Let us denote 𝜂2 := Var(𝜃T𝑋) and observe

‖𝜃‖2

‖Σ−1‖op
≤ 𝜂2 ≤ ‖𝜃‖2‖Σ‖op.
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With this in mind, we will actually show the seemingly stronger result,

Pr
[︁
𝑑(𝜃T𝑋,Z) ≥ 𝜅

𝐶
min (1, 𝜎) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩

]︁
≥ 𝜅

𝐶
.

However, since the class of measures considered by the lemma is preserved under
rotations this is an actual equivalent statement.

By assumption, 𝜂
𝜎‖𝜃‖ ≥

1√
𝐶
, and if we choose 𝜀 = 1

2𝐶 in Lemma 4.5.1, then

Pr
[︂
𝑑(𝜃T𝑋,Z) ≥ 𝛿√

𝐶
min (1, ‖𝜃‖𝜎)

]︂
≥ 1− 1

2𝐶
,

where 𝛿 = 1
48𝐶3 . To complete the proof, by assumption 𝜈,

Pr (⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩) ≥ 1

𝐶
.

Thus, with a union bound

Pr
[︂
𝑑(𝜃T𝑋,Z) ≥ 𝛿√

𝐶
min (1, ‖𝜃‖∞𝜎) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩

]︂

=
Pr
[︁
𝑑(𝜃T𝑋,Z) ≥ 𝛿√

𝐶
min (1, ‖𝜃‖∞𝜎) and ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩

]︁
Pr (⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩)

≥ Pr
[︂
𝑑(𝜃T𝑋,Z) ≥ 𝛿√

𝐶
min (1, ‖𝜃‖∞𝜎)

]︂
+ Pr (⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩)− 1

≥
(︂

1

2𝐶
+ 1− 1

𝐶

)︂
+

1

𝐶
− 1 ≥ 1

2𝐶
.

Discrete distributions

We now prove anti-concentration results for discrete distributions supported on Z𝑚.
Our result pertains to random variables which are uniform on intervals of length at
least 3.

Lemma 4.5.3. Let𝑋 = (𝑋1, . . . , 𝑋𝑚) be a random vector in R𝑚, such that {𝑋𝑖}𝑚𝑖=1

are i.i.d. uniformly on {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑘}, for some 𝑎, 𝑘 ∈ N, with 𝑘 > 1. Set
𝜇 = E[𝑋1] and 𝜎 = 𝑘. Then Var[𝑋1] 4 𝜎2𝐼𝑚, and for every 𝜃 ∈ [−1

2 ,
1
2 ]

𝑚, and every
𝜈 ∈ R𝑚,

Pr
(︂
𝑑(𝜃T𝑋,Z) ≥ 1

20
min (‖𝜃‖∞𝜎, 1) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇1⟩

)︂
≥ 1

40
.

In other words, 𝑋 is (𝑘, 1
40)-anti-concentrated.
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Proof. Observe that, as 𝑋 is symmetric around its mean,

Pr
(︂
𝑑(𝜃T𝑋,Z) ≥ 1

20
min (‖𝜃‖∞𝜎, 1) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇1⟩

)︂
=

Pr
(︀
𝑑(𝜃T𝑋,Z) ≥ 1

20 min (‖𝜃‖∞𝜎, 1) and ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇1⟩
)︀

Pr (⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇1⟩)

≥ Pr
(︂
𝑑(𝜃T𝑋,Z) ≥ 1

20
min (‖𝜃‖∞𝜎, 1) and ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇1⟩

)︂
,

With no loss of generality, let us assume |𝜃𝑚| = ‖𝜃‖∞ and consider the event,

𝐸 =

{︃
𝑚−1∑︁
𝑖=1

𝜈𝑖𝑋𝑖 ≤ 𝜇
𝑚−1∑︁
𝑖=1

𝜈𝑖 and 𝜈𝑚𝑋𝑚 ≤ 𝜇𝜈𝑚

}︃
.

Clearly, 𝐸 ⊆ {⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇1⟩}, and by symmetry and independence, Pr (𝐸) ≥ 1
4 .

With the previous display,

Pr
(︂
𝑑(𝜃T𝑋,Z) ≥ 1

20
min (‖𝜃‖∞𝜎, 1) | ⟨𝜈,𝑋⟩ ≤ ⟨𝜈, 𝜇⟩

)︂
≥ Pr

(︂
𝑑(𝜃T𝑋,Z) ≥ 1

20
min (‖𝜃‖∞𝜎, 1) , 𝑋 ∈ 𝐸

)︂
=

1

4
Pr
(︂
𝑑(𝜃T𝑋,Z) ≥ 1

20
min (‖𝜃‖∞𝜎, 1) | 𝑋 ∈ 𝐸

)︂
.

Now, denote 𝑟 :=
𝑚−1∑︀
𝑖=1

𝜃𝑖𝑋𝑖, and rewrite,

𝑑(𝜃T𝑋,Z) = 𝑑(𝜃𝑚𝑋𝑚, (Z− 𝑟)).

We observe that under the conditioning on 𝐸, depending on sign(𝜈𝑚), 𝜃𝑚𝑋𝑚 is
either uniform on {𝜃𝑚𝑎, 𝜃𝑚(𝑎 + 1) . . . 𝜃𝑚⌊𝜇⌋}, or on {𝜃𝑚⌈𝜇⌉ . . . 𝜃𝑚(𝑎 + 𝑘)}. In
both cases this set has size ⌊𝑘2⌋+ 1. We are then interested in the size of the set

𝐹 = {𝜃𝑚 · 𝑥 : 𝑑(𝜃𝑚𝑥, (Z− 𝑟)) ≥
1

20
min (𝜃𝑚𝜎, 1) and 𝑥 ∈ support(𝑋𝑚|𝐸)}.

Since |𝜃𝑚| ≤ 1
2 , we can show that, as long as 𝑘 ≥ 2,

|𝐹 |
|Support(𝑋𝑚|𝐸)|

≥ 1

10
. (4.12)
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This can be done by considering an arbitrary integer interval 𝑆 of size ⌈𝑘2⌉+ 1 and
noting that at most a 9

10 fraction of the set 𝜃𝑚𝑆 mod 1 can occupy any interval 𝐼
of length 1

10 min (𝜃𝑚𝜎, 1).
Indeed, let 𝐼 be such an interval. If 𝜃𝑚 > 1

10 min (𝜃𝑚𝜎, 1), then it cannot
be the case that for some 𝑗, both 𝑗𝜃𝑚, (𝑗 + 1)𝜃𝑚 ∈ 𝐼 + Z. On the other hand,
if 𝜃𝑚 ≤ 1

10 min (𝜃𝑚𝜎, 1), then let 𝑣 = ⌈ 1
10 min(𝜎, 1

𝜃𝑚
)⌉ and consider the set 𝑆′

consisting of the 𝑣 smallest elements of 𝑆. If, for some 𝑗 ∈ 𝜃𝑚𝑆′, 𝑗𝜃𝑚 ∈ 𝐼 + Z,
necessarily, (𝑗 + 𝑣)𝜃𝑚 /∈ 𝐼 + Z.

Note that 𝑆′ is disjoint from 𝑆′ + 𝑣. We have 𝑣 ≤ ⌈ 1
10𝜎⌉ ≤ ⌈

1
10𝑘⌉, so that

|𝑆′|+ 𝑣 = 2𝑣 ≤ 2⌈ 1
10𝑘⌉ ≤ ⌈𝑘/2⌉ = |𝑆| for 𝑘 ≥ 2. So 𝑆′ + 𝑣 ⊆ 𝑆.

Hence, for every 𝑥 ∈ 𝑆′ with 𝜃𝑚𝑥 ∈ (𝐼 + Z) we have shown that 𝜃𝑚(𝑥 +
𝑣) /∈ (𝐼 +Z) and that 𝑥+ 𝑣 ∈ 𝑆 ∖ 𝑆′. This shows that |𝜃𝑚𝑆 ∖ (𝐼 +Z)| ≥ |𝑆′| ≥ 𝑘

10 ,
proving (4.12).

Thus, by invoking the law of total probability on all possible values of 𝑟,

Pr
(︂
𝑑(𝜃T𝑋,Z) ≥ 1

20
min (𝜃𝑚𝜎, 1) | 𝑋 ∈ 𝐸

)︂
≥ |𝐹 |
|Support(𝑋𝑚|𝐸)|

≥ 1

10
.

Further, note that Var[𝑋] = 𝑘2+2𝑘
12 𝐼𝑚 4 𝜎2𝐼 .
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Chapter 5

Node selection in the explorable heap model

An important component of the branch-and-bound algorithm is the node selection
rule, which determines the order in which the solution space is explored. Node
selection rules can be studied theoretically by considering an abstract problem called
explorable heap selection. It was originally proposed by Karp, Saks and Wigderson to
model node selection for branch-and-bound with low space-complexity [KSW86]1.
As we will explain, the problem remains practically relevant to branch-and-bound
even in the full space setting. We provide a randomized algorithm for the problem
with an expected running time of 𝑂(𝑛 log(𝑛)3) and space complexity of 𝑂(log(𝑛)).
This running time is significantly better than the 𝑛 exp(𝑂(

√︀
log(𝑛))) running time

of the previous best algorithm [KSW86]. We also give a lower bound on the running
time of space-restricted algorithms for the problem.

5.1 Introduction

The explorable heap selection problem is an online graph exploration problem for an
agent on a rooted (possibly infinite) binary tree. The nodes of the tree are labeled by
distinct real numbers (the key values) that increase along every path starting from
the root. The tree can thus be thought of as a min-heap. Starting at the root, the
agent’s objective is to select the 𝑛th smallest value in the tree while minimizing the
distance traveled, where each edge of the tree has unit travel cost. The key value of
a node is only revealed when the agent visits it, and thus the problem has an online
nature. When the agent learns the key value of a node, it still does not know the
rank of this value.

We note that Ω(𝑛) is a natural lower bound on the running time. This is because
verifying that a value ℒ is the 𝑛th minimum requires Θ(𝑛) time – one must at least
inspect the 𝑛 nodes with value at most ℒ – which can be done via straightforward
depth-first search.

The contents of this chapter are based on joint work with Daniel Dadush, Sophie Huiberts and
Danish Kashaev [BDHK23].

1 [KSW86] did not give the problem a name, so we have attempted to give a descriptive one here.

95
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A simple selection strategy is to use the best-first rule, which repeatedly explores
the unexplored node whose parent has the smallest key value. While this rule is
optimal in terms of the number of nodes that it explores, namely Θ(𝑛), the distance
traveled by the agent can be far from optimal. In the worst-case, an agent using this
rule will need to travel a distance of Θ(𝑛2) to find the 𝑛th smallest value. A simple
bad example for this rule is to consider a rooted tree consisting of two paths (which
one can extend to a binary tree), where the two paths are consecutively labeled
by all positive even and odd integers respectively. Moreover, the space complexity
becomes Ω(𝑛) in general when using the best-first rule, because essentially all the
explored nodes might need to be kept in memory. We note that irrespective of
computational considerations on the agent, either in terms of working memory or
running time restrictions, minimizing the total travel distance in explorable heap
selection remains a challenging online problem.

Improving on the best-first strategy, Karp, Saks and Wigderson [KSW86] gave a
randomized algorithm with expected cost 𝑛 · exp(𝑂(

√︀
log(𝑛))) using 𝑂(

√︀
log(𝑛))

working space. They also showed how to make the algorithm deterministic using
𝑂(log(𝑛)2.5) space. In this work, our main contribution is an improved randomized
algorithm with expected cost 𝑂(𝑛 log(𝑛)3) using 𝑂(log(𝑛)) space. Given the Ω(𝑛)
lower bound, our travel cost is optimal up to logarithmic factors. Furthermore, we
show that any algorithm for explorable heap selection that uses only 𝑠 units of
memory, must take at least 𝑛 · log𝑠(𝑛) time in expectation. An interesting open
problem is the question whether a superlinear lower bound also holds without any
restriction on the memory usage.

To clarify the memory model, it is assumed that any key value and 𝑂(log𝑛)
bit integer can be stored using 𝑂(1) space. We also assume that maintaining the
current position in the tree does not take up memory. Furthermore, we assume that
key value comparisons and moving across an edge of the tree require 𝑂(1) time.
Under these assumptions, the running times of the above algorithms happen to be
proportional to their travel cost. Throughout the chapter, we will thus use travel
cost and running time interchangeably.

Motivation

The study of the explorable heap selection problem is motivated by the branch-
and-bound algorithm. At the core, the branch-and-bound algorithm consists of
two important components: the branching rule and the node selection rule. The
branching rule determines how to split up a problem into subproblems, by choosing
a variable to branch on. Substantial research has been done on branching rules, see,
e.g., [LS99; AKM05; LZ17; BDSV18].

The node selection rule decides which subproblem to solve next. Not much
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theoretical research has been done on the choice of the node selection rule. Tradi-
tionally, the best-first strategy is thought to be optimal from a theoretical perspective
because this rule minimizes the number of nodes that need to be visited. However,
a disadvantage of this rule is that searches using it might use space proportional
to the number of explored nodes, because all of them need to be kept in memory.
In contrast to this, a simple strategy like depth-first search only needs to store
the current solution. Unfortunately, performing a depth-first search can lead to
an arbitrarily bad running time. This was the original motivation for introducing
the explorable heap selection problem [KSW86]. By guessing the number 𝑁 of
branch-and-bound nodes whose LP values are at most that of the optimal IP solution
(which can be done via successive doubling), a search strategy for this problem can be
directly interpreted as a node selection rule. The algorithm that they introduced can
therefore be used to implement branch-and-bound efficiently in only𝑂

(︁√︀
log(𝑁)

)︁
space.

Nowadays, computers have a lot of memory available. This usually makes
it feasible to store all explored nodes of the branch-and-bound tree in memory.
However, many MIP solvers still make use of a hybrid method that consists of both
depth-first and best-first searches. This is not only done because depth-first search
uses less memory, but also because it is often faster. Experimental studies have
confirmed that the depth-first strategy is in many cases faster than best-first one
[CP99]. This seems contradictory, because the running time of best-first search is
often thought to be theoretically optimal.

In part, this contradiction can be explained by the fact that actual IP-solvers
often employ complementary techniques and heuristics on top of branch-and-bound,
which might benefit from depth-first searches. Additionally, a best-first search can
hop between different parts of the tree, while a depth first search subsequently
explores nodes that are very close to each other. In the latter case, the LP-solver can
start from a very similar state, which is known as warm starting. This is faster for a
variety of technical reasons [Ach07b]. For example, this can be the case when the
LP-solver makes use of the LU-factorization of the optimal basis matrix [MJSS16].
Through the use of dynamic algorithms, computing this can be done faster if a
factorization for a similar LP-basis is known [SS93]. Because of its large size, MIP
solvers will often not store the LU-factorization for all nodes in the tree. This makes it
beneficial to move between similar nodes in the branch-and-bound tree. Furthermore,
moving from one part of the tree to another means that the solver needs to undo and
redo many bound changes, which also takes up time. Hence, the amount of distance
traveled between nodes in the tree is a metric that influences the running time. This
can also be observed when running the academic MIP solver SCIP2.

2Ambros Gleixner, personal communication, 2023
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The explorable heap selection problem captures these benefits of locality by
measuring the running time in terms of the amount of travel through the tree.
Therefore, we argue that this problem is still relevant for the choice of a node
selection rule, even if all nodes can be stored in memory.

Related work

The explorable heap selection problem was first introduced in [KSW86]. Their
result was later applied to prove an upper bound on the parallel running time of
branch-and-bound [PPSV15].

When random access to the heap is provided at constant cost, selecting the 𝑛’th
value in the heap can be done by a deterministic algorithm in 𝑂(𝑛) time by using
an additional 𝑂(𝑛) memory for auxiliary data structures [Fre93].

The explorable heap selection problem can be thought of as a search game [AG03]
and bears some similarity to the cow path problem. In the cow path problem, an agent
explores an unweighted unlabeled graph in search of a target node. The location of
the target node is unknown, but when the agent visits a node they are told whether
or not that node is the target. The performance of an algorithm is judged by the ratio
of the number of visited nodes to the distance of the target from the agent’s starting
point. In both the cow path problem and the explorable heap selection problem, the
cost of backtracking and retracing paths is an important consideration. The cow
path problem on infinite 𝑏-ary trees was studied in [DCD95] under the assumption
that when present at a node the agent can obtain an estimate on that node’s distance
to the target.

Other explorable graph problems exist without a target, where typically the graph
itself is unknown at the outset. There is an extensive literature on exploration both
in graphs and in the plane [Ber98; Kam]. In some of the used models the objective is
to minimize the distance traveled [BCGL23; MMS12; KP94]. Other models are about
minimizing the amount of used memory [DFKP04]. What distinguises the explorable
heap selection problem from these problems is the information that the graph is a
heap and that the ordinal of the target is known. This can allow an algorithm to
rule out certain locations for the target. Because of this additional information, the
techniques used here do not seem to be applicable to these other problems.
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Organization

In Section 5.2 we formally introduce the explorable heap selection problem and any
notation we will use. In Section 5.3 we introduce a new algorithm for solving this
problem and provide a running time analysis. In Section 5.4 we give a lower bound
on the complexity of solving explorable heap selection using a limited amount of
memory. In Section 5.5 we conclude the chapter with some open problems.

5.2 The explorable heap selection problem

We introduce in this section the formal model for the explorable heap selection
problem. The input to the algorithm is an infinite binary tree 𝑇 = (𝑉,𝐸), where
each node 𝑣 ∈ 𝑉 has an associated real value, denoted by val(𝑣) ∈ R. We assume
that all the values are distinct. Moreover, for each node in the tree, the values of its
children are larger than its own value. Hence, for every 𝑣1, 𝑣2 ∈ 𝑉 such that 𝑣1 is
an ancestor of 𝑣2, we have that val(𝑣2) > val(𝑣1). The binary tree 𝑇 is thus a heap.

The algorithmic problem we are interested in is finding the 𝑛th smallest value in
this tree. This may be seen as an online graph exploration problem where an agent
can move in the tree and learns the value of a node each time they explore it. At
each time step, the agent resides at a vertex 𝑣 ∈ 𝑉 and may decide to move to either
the left child, the right child or the parent of 𝑣 (if it exists, i.e. if 𝑣 is not the root of
the tree). Each traversal of an edge costs one unit of time, and the complexity of
an algorithm for this problem is thus measured by the total traveled distance in the
binary tree. The algorithm is also allowed to store values in memory.

We now introduce a few notations used throughout the chapter.

• For a node 𝑣 ∈ 𝑉 , also per abuse of notation written 𝑣 ∈ 𝑇 , we denote by
𝑇 (𝑣) the subtree of 𝑇 rooted at 𝑣.

• For a tree 𝑇 and a value ℒ ∈ R, we define the subtree 𝑇ℒ := {𝑣 ∈ 𝑇 |
val(𝑣) ≤ ℒ}.

• We denote the 𝑛th smallest value in 𝑇 by SELECT𝑇 (𝑛). This is the quantity
that we are interested in finding algorithmically.

• We say that a value 𝒱 ∈ R is good for a tree 𝑇 if 𝒱 ≤ SELECT𝑇 (𝑛) and bad
otherwise. Similarly, we call a node 𝑣 ∈ 𝑇 good if val(𝑣) ≤ SELECT𝑇 (𝑛) and
bad otherwise.

• We will use [𝑘] to refer to the set {1, . . . , 𝑘}.
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• When we write log(𝑛), we assume the base of the logarithm to be 2.

For a given value 𝒱 ∈ R, it is easy to check whether it is good in𝑂(𝑛) time: start
a depth first search at the root of the tree, turning back each time a value strictly
greater than 𝒱 is encountered. In the meantime, count the number of values below
𝒱 found so far and stop the search if more than 𝑛 values are found. If the number
of values below 𝒱 found at the end of the procedure is at most 𝑛, then 𝒱 is a good
value. This procedure is described in more detail later in the DFS subroutine.

We will often instruct the agent to move to an already discovered good vertex
𝑣 ∈ 𝑉 . The way this is done algorithmically is by saving val(𝑣) in memory and
starting a depth first search at the root, turning back every time a value strictly
bigger than val(𝑣) is encountered until finally finding val(𝑣). This takes at most
𝑂(𝑛) time, since we assume 𝑣 to be a good node. If we instruct the agent to go back
to the root from a certain vertex 𝑣 ∈ 𝑉 , this is simply done by traveling back in the
tree, choosing to go to the parent of the current node at each step.

In later sections, we will often say that a subroutine takes a subtree 𝑇 (𝑣) as
input. This implicitly means that we in fact pass it val(𝑣) as input, make the agent
travel to 𝑣 ∈ 𝑇 using the previously described procedure, call the subroutine from
that position in the tree, and travel back to the original position at the end of the
execution. Because the subroutine knows the value val(𝑣) of the root of 𝑇 (𝑣), it
can ensure it never leaves the subtree 𝑇 (𝑣), thus making it possible to recurse on a
subtree as if it were a rooted tree by itself. We write the subtree 𝑇 (𝑣) as part of the
input for simplicity of presentation.

We will sometimes want to pick a value uniformly at random from a set of values
{𝒱1, . . . ,𝒱𝑘} of unknown size that arrives in a streaming fashion, for instance when
we traverse a part of the tree 𝑇 by doing a depth first search. That is, we see the
value 𝒱𝑖 at the 𝑖th time step, but do no longer have access to it in memory once
we move on to 𝒱𝑖+1. This can be done by generating random values {𝑋1, . . . , 𝑋𝑘}
where, at the 𝑖th time step,𝑋𝑖 = 𝒱𝑖 with probability 1/𝑖, and𝑋𝑖 = 𝑋𝑖−1 otherwise.
It is easy to check that 𝑋𝑘 is a uniformly distributed sample from {𝒱1, . . . ,𝒱𝑘}.

5.3 A new algorithm

The authors of [KSW86] presented a deterministic algorithm that solves the ex-
plorable heap selection problem in 𝑛 · exp(𝑂(

√︀
log(𝑛))) time and 𝑂(𝑛

√︀
log(𝑛))

space. By replacing the binary search that is used in the algorithm by a randomized
variant, they are able to decrease the space requirements. This way, they obtain
a randomized algorithm with expected running time 𝑛 · exp(𝑂(

√︀
log(𝑛))) and

space complexity𝑂(
√︀

log(𝑛)). Alternatively, the binary search can be implemented
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using a deterministic routine by [MP80] to achieve the same running time with
𝑂(log(𝑛)2.5) space.

We present a randomized algorithm with a running time𝑂(𝑛 log(𝑛)3) and space
complexity 𝑂(log(𝑛)). Unlike the algorithms mentioned before, our algorithm
fundamentally relies on randomness to bound its running time. This bound only
holds when the algorithm is run on a tree with labels that are fixed before the
execution of the algorithm. That is, the tree must be generated by an adversary that
is oblivious to the choices made by the algorithm. This is a stronger assumption
than is needed for the algorithm that is given in [KSW86], which also works against
adaptive adversaries. An adaptive adversary is able to defer the decision of the
node label to the time that the node is explored. Note that this distinction does
not really matter for the application of the algorithm as a node selection rule in
branch-and-bound, since there the node labels are fixed because they are derived
from the integer program and branching rule.

Theorem 5.3.1. There exists a randomized algorithm that solves the explorable heap
selection problem, with expected running time 𝑂(𝑛 log(𝑛)3) and 𝑂(log(𝑛)) space.

As mentioned above, checking whether a value 𝑣 is good can be done in 𝑂(𝑛)
time by doing a depth-first search with cutoff value val(𝑣) that returns when more
than 𝑛 good nodes are found. For a set of 𝑘 values, we can determine which of them
are good in 𝑂(log(𝑘)𝑛) time by performing a binary search.

The explorable heap selection problem can be seen as the problem of finding all
𝑛 good nodes. Both our method and that of [KSW86] function by first identifying a
subtree consisting of only good nodes. The children of the leaves of this subtree are
called “roots” and the subtree is extended by finding a number of new good nodes
under these roots in multiple rounds.

In [KSW86] this is done by running 𝑂(𝑐
√︀

2 log(𝑛)) different rounds, for some
constant 𝑐 > 1. In each round, the algorithm finds 𝑛/𝑐

√︀
2 log(𝑛) new good nodes.

These nodes are found by recursively exploring each active root and using binary
search on the observed values to discover which of these values are good. Which
active roots are recursively explored further depends on which values are good. The
recursion in the algorithm is at most 𝑂(

√︀
log(𝑛)) levels deep, which is where the

space complexity bound comes from.
In our algorithm, we take a different approach. We will call our algorithm

consecutively with 𝑛 = 1, 2, 4, 8, . . . . Hence, for a call to the algorithm, we can
assume that we have already found at least 𝑛/2 good nodes. These nodes form a
subtree of the original tree 𝑇 . In each round, our algorithm chooses a random root
under this subtree and finds every good node under it. It does so by doing recursive
subcalls to the main algorithm on this root with values 𝑛 = 1, 2, 4, 8, . . .. As soon
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as the recursively obtained node is a bad node, the algorithm stops searching the
subtree of this root, since it is guaranteed that all the good nodes there have been
found. The largest good value that is found can then be used to find additional good
nodes under the other roots without recursive calls, through a simple depth-first
search. Assuming that the node values were fixed in advance, we expect this largest
good value to be greater than half of the other roots’ largest good values. Similarly,
we expect its smallest bad value to be smaller than half of the other roots’ smallest
bad values. By this principle, a sizeable fraction of the roots can, in expectation, be
ruled out from getting a recursive call. Each round a new random root is selected
until all good nodes have been found.

This algorithm allows us to effectively perform binary search on the list of roots,
ordered by the largest good value contained in each of their subtrees in 𝑂(log𝑛)
rounds, and the same list ordered by the smallest bad values (Lemma 5.3.4). Bounding
the expected number of good nodes found using recursive subcalls requires a subtle
induction on two parameters (Lemma 5.3.3): both 𝑛 and the number of good nodes
that have been identified so far.

Importantly, the concept of a good node is always used with respect to the
current function call. So, a node might be good in one recursive call, but not good in
another.

The algorithm

We present in this subsection the algorithm for solving the explorable heap selection
problem, as well as the subroutines used in it. This algorithm is named Select and
outputs the 𝑛th smallest value in the tree 𝑇 .

A procedure used in Select is the Extend algorithm, which assumes that at
least 𝑛/2 good nodes have already been found in the tree, and also outputs the 𝑛th
smallest one.
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Algorithm 1 The Select procedure
1: Input : 𝑛 ∈ N
2: Output : SELECT(𝑛), the 𝑛th smallest value in the heap 𝑇 .
3: procedure Select(𝑛)
4: 𝑘 ← 1
5: ℒ ← val(𝑣) // 𝑣 is the root of the tree 𝑇
6: while 𝑘 < 𝑛 do
7: if 𝑘 < 𝑛/2 then
8: 𝑘′ ← 2𝑘
9: else

10: 𝑘′ ← 𝑛

11: ℒ ← Extend(𝑇, 𝑘′, 𝑘,ℒ)
12: 𝑘 ← 𝑘′

13: return ℒ
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Algorithm 2 The Extend procedure
1: Input: 𝑇 : tree which is to be explored.
2: 𝑛 ∈ N: total number of good values to be found, satisfying 𝑛 ≥ 2.
3: 𝑘 ∈ N: number of good values already found, satisfying 𝑘 ≥ 𝑛/2.
4: ℒ0 ∈ R: value satisfying DFS(𝑇,ℒ0, 𝑛) = 𝑘.
5: Output: the 𝑛th smallest value in 𝑇 .

6: procedure Extend(𝑇 , 𝑛, 𝑘, ℒ0)
7: ℒ ← ℒ0
8: 𝒰 ← ∞
9: while 𝑘 < 𝑛 do

10: 𝑟 ← random element from Roots(𝑇 , ℒ0, ℒ, 𝒰 )

11: ℒ′ ← max(ℒ, val(𝑟))
12: 𝑘′ ← DFS(𝑇 , ℒ′, 𝑛) // count the number of values ≤ ℒ′ in 𝑇
13: 𝑐← DFS(𝑇 (𝑟), ℒ′, 𝑛) // counting the number of values ≤ ℒ′ in 𝑇 (𝑟)

14: 𝑐′ ← min(𝑛−𝑘′+𝑐, 2𝑐) // increase number of values to be found in 𝑇 (𝑟)

15: while 𝑘′ < 𝑛 do // loop until it is certified that SELECT𝑇 (𝑛) ≤ ℒ′
16: ℒ′ ← Extend(𝑇 (𝑟), 𝑐′, 𝑐, ℒ′)
17: 𝑘′ ← DFS(𝑇 , ℒ′, 𝑛)
18: 𝑐← 𝑐′

19: 𝑐′ ← min(𝑛− 𝑘′ + 𝑐, 2𝑐)

20: ℒ̃,𝒰 ← GoodValues(𝑇, 𝑇 (𝑟),ℒ′, 𝑛) // find the good values in 𝑇 (𝑟)

21: ℒ ← max(ℒ, ℒ̃)
22: 𝒰 ← min(𝒰 ,𝒰)
23: 𝑘 ← DFS(𝑇 , ℒ, 𝑛) // compute the number of good values found in 𝑇
24: return ℒ
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Let us describe a few invariants from the Extend procedure.

• ℒ and 𝒰 are respectively lower and upper bounds on SELECT𝑇 (𝑛) during
the whole execution of the procedure. More precisely, ℒ ≤ SELECT𝑇 (𝑛) and
𝒰 > SELECT𝑇 (𝑛) at any point, and hence ℒ is good and 𝒰 is bad. The integer
𝑘 counts the number of values ≤ ℒ in the full tree 𝑇 .

• No root can be randomly selected twice. This is ruled out by the updated
values of ℒ and 𝒰 , and the proof can be found in Theorem 5.3.2.

• After an iteration of the inner while loop, ℒ′ is set to the 𝑐th smallest value in
𝑇 (𝑟). The variable 𝑐′ then corresponds to the next value we would like to find
in 𝑇 (𝑟) if we were to continue the search. Note that 𝑐′ ≤ 2𝑐, enforcing that the
recursive call to Extend satisfies its precondition, and that 𝑐′ ≤ 𝑛− (𝑘′ − 𝑐)
implies that (𝑘′ − 𝑐) + 𝑐′ ≤ 𝑛, which implies that the recursive subcall will
not spend time searching for a value that is known in advance to be bad.

• From the definition of 𝑘′ and 𝑐 one can see that 𝑘′ ≥ 𝑘⋆ + 𝑐. Combined with
the previous invariant, we see that 𝑐′ ≤ 𝑛− 𝑘.

• 𝑘′ always counts the number of values ≤ ℒ′ in the full tree 𝑇 . It is important
to observe that this is a global parameter, and does not only count values
below the current root. Moreover, 𝑘′ ≥ 𝑛 implies that we can stop searching
below the current root, since it is guaranteed that all good values in 𝑇 (𝑟) have
been found, i.e., ℒ′ is larger than all the good values in 𝑇 (𝑟).

We now describe the subroutines used in the Extend procedure.

The procedure DFS

The procedure DFS is a variant of depth first search. The input to the procedure is 𝑇 ,
a cutoff value ℒ ∈ R and an integer 𝑛 ∈ N. The procedure returns the number of
vertices in 𝑇 whose value is at most ℒ.

It achieves that by exploring the tree 𝑇 in a depth first search manner, starting
at the root and turning back as soon as a node 𝑤 ∈ 𝑇 such that val(𝑤) > ℒ is
encountered. Moreover, if the number of nodes whose value is at most ℒ exceeds 𝑛
during the search, the algorithm stops and returns 𝑛+ 1.

The algorithm output is the following integer.

DFS(𝑇,ℒ, 𝑛) := min
{︀⃒⃒
𝑇ℒ
⃒⃒
, 𝑛+ 1

}︀
.

Observe that the DFS procedure allows us to check whether a node 𝑤 ∈ 𝑇 is a
good node, i.e. whether val(𝑤) ≤ SELECT𝑇 (𝑛). Indeed, 𝑤 is good if and only if
DFS(𝑇, val(𝑤), 𝑛) ≤ 𝑛.
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Figure 5.1: An illustration of 𝑅(𝑇,ℒ0) with ℒ0 = 4. The number above each vertex
is its value, the blue nodes are 𝑅(𝑇,ℒ0), whereas the subtree above is 𝑇ℒ0 .

This algorithm visits only nodes in 𝑇ℒ or its direct descendants and its running
time is 𝑂(𝑛). The space complexity is 𝑂(1), since the only values needed to be
stored in memory are ℒ, val(𝑣), where 𝑣 is the root of the tree 𝑇 , and a counter for
the number of good values found so far.

The procedure Roots

The procedure Roots takes as input a tree 𝑇 as well as an initial fixed lower bound
ℒ0 ∈ R on the value of SELECT𝑇 (𝑛). We assume that the main algorithm has
already found all the nodes 𝑤 ∈ 𝑇 satisfying val(𝑤) ≤ ℒ0. This means that the
remaining values the main algorithm needs to find in 𝑇 are all lying in the subtrees
of the following nodes, that we call the ℒ0-roots of 𝑇 :

𝑅(𝑇,ℒ0) :=
{︀
𝑟 ∈ 𝑇 ∖ 𝑇ℒ0

⃒⃒
𝑟 is a child of a node in 𝑇ℒ0

}︀
In other words, these are all the vertices in 𝑇 one level deeper in the tree than 𝑇ℒ0 ,
see Figure 5.1 for an illustration. In addition to that, the procedure takes two other
parameters ℒ,𝒰 ∈ R as input, which correspond to (another) lower and upper
bound on the value of SELECT𝑇 (𝑛). These bounds ℒ and 𝒰 will be variables being
updated during the execution of the main algorithm, where ℒ will be increasing
and 𝒰 will be decreasing. More precisely, ℒ will be the largest value that the main
algorithm has certified being at most SELECT𝑇 (𝑛), whereas 𝒰 will be the smallest
value that the algorithm has certified being at least that. A key observation is that
these lower and upper bounds can allow us to remove certain roots in 𝑅(𝑇,ℒ0)
from consideration, in the sense that all the good values in that root’s subtree will be
certified to have already been found. The only roots that the main algorithm needs
to consider, when ℒ and 𝒰 are given, are thus the following.
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Figure 5.2: An illustration of the Roots procedure with ℒ0 = 4,ℒ = 7 and 𝒰 = 10.
Only two active roots remain, and are both colored in blue. The other roots are
considered killed since all the good values have been found in their subtrees.

Roots(𝑇,ℒ0,ℒ,𝒰) :=
{︁
𝑟 ∈ 𝑅(𝑇,ℒ0) | ∃𝑤 ∈ 𝑇 (𝑟) with val(𝑤) ∈ (ℒ,𝒰)

}︁
This subroutine can be implemented as follows. Run a depth first search starting

at the root of 𝑇 . Once a node 𝑟 ∈ 𝑇 with val(𝑟) > ℒ0 is encountered, the subroutine
marks that vertex 𝑟 as belonging to 𝑅(𝑇,ℒ0). The depth first search continues
deeper in the tree until finding a node 𝑤 ∈ 𝑇 (𝑟) with val(𝑤) > ℒ. At this point, if
val(𝑤) < 𝒰 , then the search directly returns to 𝑟 without exploring any additional
nodes in 𝑇 (𝑟) and adds 𝑟 to the output. If however val(𝑤) ≥ 𝒰 , then the search
continues exploring 𝑇 (𝑟)

ℒ (and its direct descendants) by trying to find a node 𝑤
with val(𝑤) ∈ (ℒ,𝒰). In case the algorithm explores all of 𝑇 (𝑟)

ℒ with its direct
descendants, and it turns out that no such node exists (i.e. every direct descendant
𝑤 of 𝑇 (𝑟)

ℒ satisfies val(𝑤) ≥ 𝒰 ), then 𝑟 is not added to the output.
This procedure takes time 𝑂(|𝑇ℒ|), i.e. proportional to the number of nodes in

𝑇 with value at most ℒ. Since the procedure is called only on values ℒ which are
known to be good, the time is bounded by 𝑂(|𝑇ℒ|) = 𝑂(𝑛).

In the main algorithm, we will only need this procedure in order to select a root
from Roots(𝑇,ℒ0,ℒ,𝒰) uniformly at random, without having to store the whole
list in memory. This can then be achieved in 𝑂(1) space, since one then only needs
to store val(𝑣),ℒ0,ℒ and 𝒰 in memory, where 𝑣 is the root of the tree 𝑇 .
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The procedure GoodValues

The procedure GoodValues takes as input a tree 𝑇 , a subtree 𝑇 (𝑟) for a node 𝑟 ∈ 𝑇 ,
a value ℒ′ ∈ R≥0 and an integer 𝑛 ∈ N. The procedure then analyzes the set

𝑆 :=
{︁
val(𝑤)

⃒⃒
𝑤 ∈ 𝑇 (𝑟), val(𝑤) ≤ ℒ′

}︁
and outputs both the largest good value and the smallest bad value in that set, that
we respectively call ℒ and 𝒰 . If no bad values exist in 𝑆, the algorithm sets 𝒰 =∞.
Notice that this output determines, for each value in 𝑆, whether it is good or not.
Indeed, any 𝒱 ∈ 𝑆 is good if and only if 𝒱 ≤ ℒ, and is bad if and only if 𝒱 ≥ 𝒰 .

The implementation is as follows. Initialize the variables ℒ = −∞ and 𝒰 = ℒ′.
These variables correspond to lower and upper bounds on SELECT𝑇 (𝑛). Loop
through the values in

𝑆′ :=
{︁
val(𝑤) | 𝑤 ∈ 𝑇 (𝑟), ℒ < val(𝑤) < 𝒰

}︁
using a depth first search starting at 𝑟 and sample one value 𝒱 uniformly randomly
from that set. Check whether 𝒱 is a good value by calling DFS(𝑇,𝒱, 𝑛). If it is good,
update ℒ = 𝒱 . If it is bad, update 𝒰 = 𝒱 . Continue this procedure until 𝑆′ is empty,
i.e. |𝑆′| = 0. If, at the end of the procedure, ℒ = ℒ′ = 𝒰 , then set 𝒰 = ∞. The
output is thus:

GoodValues(𝑇, 𝑇 (𝑟),ℒ′, 𝑛) := {ℒ,𝒰}

where

ℒ := max
{︀
𝒱 ∈ 𝑆 | 𝒱 ≤ SELECT𝑇 (𝑛)

}︀
,

𝒰 := min
{︀
𝒱 ∈ 𝑆 | 𝒱 > SELECT𝑇 (𝑛)

}︀
.

Sampling a value from𝑆′ and checking whether the sampled value is good takes𝑂(𝑛)
time (under the assumption that |𝑆′| = 𝑂(𝑛), which will always be the case when
this procedure is called in the main algorithm, since |{𝑣 ∈ 𝑇 | val(𝑣) ≤ ℒ′}| ≤ 2𝑛).
Moreover, in expectation, the number of updates before the set 𝑆′ is empty is
𝑂(log(𝑛)), leading to a total running time of 𝑂(𝑛 log(𝑛)).

This procedure can be implemented in 𝑂(1) space, since the only values needed
to be kept in memory are val(𝑣) (where 𝑣 is the root of the tree 𝑇 ), val(𝑟), ℒ, 𝒰 and
ℒ′, as well as the fact that every call to DFS also requires 𝑂(1) space.
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Proof of correctness

Theorem 5.3.2. At the end of the execution of Algorithm 1, ℒ is set to the 𝑛th smallest
value in 𝑇 . Moreover, the algorithm is guaranteed to terminate.

Proof. We show ℒ = SELECT𝑇 (𝑛) holds at the end of Algorithm 2, i.e. the Extend
procedure. Correctness of Algorithm 1, i.e. the Select procedure, then clearly follows
from that. First, notice that ℒ is always set to the first output of the procedure
GoodValues, which is always the value of a good node in 𝑇 , implying

ℒ ≤ SELECT𝑇 (𝑛)

at any point during the execution of the algorithm. Since the outer while loop ends
when at least 𝑛 good nodes in 𝑇 have value at most ℒ, we get

ℒ ≥ SELECT𝑇 (𝑛),

which implies that when the algorithm terminates it does so with the correct value.
It remains to prove that the algorithm terminates. We observe that every

recursive callℒ′ ← Extend(𝑇 (𝑟), 𝑐′, 𝑐,ℒ′) strictly increases the value ofℒ′, ensuring
that at least one extra value in 𝑇 is under the increased value. This implies that 𝑘′
strictly increases every iteration of the inner while loop, thus ensuring that this loop
terminates.

To see that the outer loop terminates, we observe that after each iteration the
set Roots(𝑇,ℒ0,ℒ,𝒰 ) shrinks by at least one element. As soon as this set is empty,
there will be no more roots with unexplored good values in their subtrees, so 𝑘 = 𝑛
and the algorithm terminates.

Running time analysis

The main challenge in analyzing the running time of the algorithm is dealing with
the cost of the recursive subcalls in the Extend procedure. For this we rely on two
important ideas.

Firstly, remember that 𝑛 is the index of the node value that we want to find,
while 𝑘 is the index of the node value that is passed to the procedure. In particular
this means that the procedure needs to find only 𝑛− 𝑘 new good nodes. Because of
this, our runtime bound for the recursive subcalls that are performed does not just
depend on 𝑛, but also on 𝑛− 𝑘.

We will show that the amount of travel done in the non-recursive part of a call
of Extend with parameters 𝑛 and 𝑘 is bounded by 𝑂(𝑛 log(𝑛)2). We will charge
this travel to the parent call that makes these recursive calls. Hence, a parent call
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that does 𝑧 recursive calls with parameters (𝑛1, 𝑘1), . . . , (𝑛𝑧, 𝑘𝑧) will be charged a
cost of

∑︀𝑧
𝑖=1 𝑛𝑖 log(𝑛𝑖)

2. In our analysis we will show that this sum can be upper
bounded by 4(𝑛− 𝑘) log(𝑛)2. So, for every recursive call with parameters 𝑛 and 𝑘,
a cost of at most (𝑛− 𝑘) log(𝑛)2 is incurred by the caller.

So, we only have to bound the sum over (𝑛 − 𝑘) log(𝑛)2 for all calls with
parameters 𝑛 and 𝑘 that are done. We do this by first considering a single algorithm
call with parameters 𝑛 and 𝑘 that makes 𝑧 recursive subcalls with parameters
(𝑛1, 𝑘1), . . . , (𝑛𝑧, 𝑘𝑧). For such a subcall we would like to bound the sum

∑︀𝑧
𝑖=1(𝑛𝑖−

𝑘𝑖) log(𝑛𝑖)2 by (𝑛−𝑘) log(𝑛)2. However, this bound does not hold deterministically.
Instead, we show that this bound does hold in expectation.

Now we know that every layer of recursion incurs an expected cost of at most
(𝑛− 𝑘) log(𝑛)2. Because the parameter 𝑛 will decrease by at least a constant factor
in each layer of recursion, there can be at most 𝑂(log(𝑛)) layers. An upper bound
of 𝑂((𝑛− 𝑘) log(𝑛)3) on the expected running time of the Extend then follows for
the recursive part.

Combining this with the upper bound of 𝑂(𝑛 log(𝑛)2) on the non-recursive
part, we get a total running time of 𝑂(𝑛 log(𝑛)2) + 𝑂((𝑛 − 𝑘) log(𝑛)3) for the
Extend procedure, which then implies a running time of 𝑂(𝑛 log(𝑛)3) for the
Select procedure.

Let us now prove these claims. We first show that the expectation of
∑︀𝑧

𝑖=1(𝑛𝑖−
𝑘𝑖) is bounded.

Lemma 5.3.3. Let 𝑧 be the number of recursive calls that are done in the main loop of
Extend(𝑇 , 𝑛⋆, 𝑘⋆, ℒ) with parameter 𝑘 ≥ 1. For 𝑖 ∈ [𝑧], let 𝑛𝑖 and 𝑘𝑖 be the values of
𝑛 and 𝑘 that are given as parameters to the 𝑖th such subcall. Then:

E

[︃
𝑧∑︁

𝑖=1

𝑛𝑖 − 𝑘𝑖

]︃
≤ 𝑛⋆ − 𝑘⋆.

Proof. Assume we have 𝑚 roots, whose order is fixed arbitrarily. For 𝑖 ∈ [𝑧], let
𝑟𝑖 ∈ [𝑚] be such that the 𝑖th recursive subcall is done on the root with index 𝑟𝑖.
For 𝑡 ∈ [𝑚], let 𝑠𝑡 =

∑︀𝑧
𝑖=1 1𝑟𝑖=𝑡(𝑛𝑖 − 𝑘𝑖). From the algorithm we see that when

𝑟𝑖 = 𝑡, all successive recursive calls will also be on root 𝑡, until all good nodes under
this root have been found. The updated values of ℒ and 𝒰 ensure this root is never
selected again after this, hence all iterations 𝑖 with 𝑟𝑖 = 𝑡 are consecutive. Now let
𝑎𝑡, 𝑏𝑡 be variables that respectively denote the first and last indices 𝑖 with 𝑟𝑖 = 𝑡.
When there is no iteration 𝑖 with 𝑟𝑖 = 𝑡, then 𝑎𝑡 = 𝑏𝑡 =∞.

For two calls 𝑖 and 𝑖 + 1 with 𝑟𝑖 = 𝑡 = 𝑟𝑖+1, observe that after call 𝑖 already
𝑛𝑖 good nodes under root 𝑡 have been found. Note that on line 16, 𝑐′ corresponds



5.3. A new algorithm 111

to 𝑛𝑖 and 𝑐 corresponds to 𝑘𝑖, hence 𝑘𝑖+1 = 𝑛𝑖. Therefore, the definition of 𝑠𝑡
is a telescoping series and can be rewritten as 𝑠𝑡 = 𝑛𝑏𝑡 − 𝑘𝑎𝑡 , when we define
𝑘∞ = 𝑛∞ = 0.

Let 𝑝 = 𝑛⋆ − 𝑘⋆ and let𝑊 = {𝑤1, . . . , 𝑤𝑝} denote the 𝑝 smallest values under
𝑇 that are larger than ℒ0, in increasing order. Now each of these values in𝑊 will
be part of a subtree generated by one of the roots. For 𝑗 ∈ [𝑝], let 𝑑𝑗 ∈ [𝑚] be such
that value 𝑤𝑗 is part of the subtree of root 𝑑𝑗 . Let 𝑆𝑡 = {𝑗 ∈ [𝑝] : 𝑑𝑗 = 𝑡}.

We will now show that for each root 𝑟𝑡, we have:

E[𝑠𝑡] ≤ |𝑆𝑡|.

This will imply that E [
∑︀𝑧

𝑖=1 𝑛𝑖 − 𝑘𝑖] =
∑︀𝑚

𝑡=1 E[𝑠𝑡] ≤
∑︀𝑚

𝑡=1 |𝑆𝑡| = 𝑛⋆ − 𝑘⋆.
First, let us consider a root 𝑡 with 𝑡 ̸= 𝑑𝑝. On line 10 each iteration a random

root is chosen. Because in every iteration root 𝑑𝑝 will be among the active roots, the
probability that this root is chosen before root 𝑡, is at least a half. So, we have two
cases:

• If root 𝑑𝑝 is chosen before root 𝑡, then DFS(𝑇 , ℒ, 𝑛) will return 𝑛, and the
algorithm will terminate. Because no subcalls will be done on root 𝑡, in this
case 𝑠𝑡 = 0.

• If instead root 𝑡 is chosen before root 𝑑𝑝, then consider iteration 𝑏𝑡, the last
iteration 𝑖 that has 𝑟𝑖 = 𝑡. Before this iteration, already 𝑘𝑏𝑡 good nodes under
the root have been found by the algorithm. It can be seen in the algorithm on
lines 14 and 19 that 𝑛𝑏𝑡 ≤ 2𝑘𝑏𝑡 . Hence, 𝑠𝑡 = 𝑛𝑏𝑡 − 𝑘𝑎𝑡 ≤ 𝑛𝑏𝑡 ≤ 2𝑘𝑏𝑡 ≤ 2|𝑆𝑡|.

We therefore have:

E[𝑠𝑡] ≤
1

2
· 0 + 1

2
· 2|𝑆𝑡| = |𝑆𝑡|.

Now consider the root 𝑑𝑝. If 𝑆𝑑𝑝 = [𝑝], then 𝑠𝑝 = 𝑛𝑏𝑑𝑝−𝑘𝑎𝑑𝑝 ≤ 𝑛
⋆−𝑘⋆ = |𝑆𝑑𝑝 |,

because 𝑛𝑖 ≤ 𝑛⋆ − 𝑘⋆ for all 𝑖.
If 𝑆𝑑𝑝 ( [𝑝], then there exists a 𝑗 with 𝑑𝑗 ̸= 𝑑𝑝. Thus, we can define 𝑗⋆ =

max{𝑗 ∈ [𝑝] : 𝑑𝑗 ̸= 𝑑𝑝}. With probability a half, root 𝑑𝑗⋆ is considered before root
𝑑𝑝. If this happens, ℒ will be equal to 𝑤𝑗⋆ when root 𝑑𝑝 is selected by the algorithm.
In particular, this means that 𝑘𝑎𝑑𝑝 will be equal to 𝑗⋆. Recall the stated invariant
that 𝑐′ ≤ 𝑛⋆ − 𝑘⋆ = 𝑝. Now we can see that 𝑠𝑑𝑝 = 𝑛𝑏𝑑𝑝 − 𝑘𝑎𝑑𝑝 ≤ 𝑝− 𝑗

⋆.
If root 𝑑𝑝 is chosen before root 𝑑𝑗⋆ , then consider the last recursive call 𝑏𝑑𝑝 to

Extend that we do on root 𝑑𝑝. Abbreviate 𝑘′ := 𝑘𝑏𝑑𝑝 and define𝐴 = [𝑘′−𝑘⋆]∩𝑆𝑑𝑝 ,
i.e. the set of all good values under root 𝑑𝑝 that have been found so far. We may
write 𝑐 = |𝐴| and 𝑐′ = 𝑛𝑏𝑑𝑝 We distinguish two cases.
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If 𝑘′ − 𝑘⋆ ≥ 𝑗⋆, i.e., when all good values under 𝑑𝑗⋆ have been found, then
by the definition of 𝑗⋆ we have [𝑝] ∖ [𝑘′ − 𝑘⋆] ⊆ [𝑝] ∖ [𝑗⋆] ⊆ 𝑆𝑑𝑝 . Because 𝐴 and
[𝑝] ∖ [𝑘′ − 𝑘⋆] are disjoint, we have |𝐴|+ (𝑛⋆ − 𝑘′) = |𝐴|+ |[𝑝] ∖ [𝑘′ − 𝑘⋆]| ≤ |𝑆𝑑𝑝 |.
Hence:

𝑐′ ≤ 𝑛⋆ − 𝑘′ + 𝑐 = 𝑛⋆ − 𝑘′ + |𝐴| ≤ |𝑆𝑑𝑝 |.

Therefore, 𝑠𝑑𝑝 ≤ 𝑛𝑏𝑑𝑝 = 𝑐′ ≤ |𝑆𝑑𝑝 |.
If 𝑘′−𝑘⋆ < 𝑗⋆ at the time of subcall 𝑏𝑑𝑝 , then the last good value under 𝑑𝑗⋆ has yet

to be found, implying that𝐴 ⊆ [𝑗⋆]. From the definition of 𝑗⋆ we get [𝑝]∖ [𝑗⋆] ⊆ 𝑆𝑑𝑝 .
Hence, |𝐴| ≤ |𝑆𝑑𝑝 |−|[𝑝]∖[𝑗⋆]| = |𝑆𝑑𝑝 |−(𝑝−𝑗⋆). Thus, 𝑐′ ≤ 2𝑐 = 2|𝐴| ≤ 2(|𝑆𝑑𝑝 |−
(𝑝− 𝑗⋆)). So, in this case we have 𝑠𝑑𝑝 ≤ 𝑛𝑏𝑑𝑝 = 𝑐′ ≤ 2(|𝑆𝑑𝑝 | − (𝑝− 𝑗⋆)).

Collecting all cases above, we find that

E[𝑠𝑑𝑝 ] ≤
1

2
· (𝑝− 𝑗⋆) + 1

2
·max

(︀
|𝑆𝑑𝑝 |, 2(|𝑆𝑑𝑝 | − (𝑝− 𝑗⋆))

)︀
≤ max

(︂
1

2
|𝑆𝑑𝑝 |+

1

2
(𝑝− 𝑗⋆), |𝑆𝑑𝑝 | −

1

2
(𝑝− 𝑗⋆)

)︂
.

Lastly, by definition of 𝑗⋆ we have [𝑝] ∖ [𝑗⋆] ⊆ 𝑆𝑑𝑝 , from which it follows that
𝑝− 𝑗⋆ ≤ |𝑆𝑑𝑝 |. We finish the proof by observing that this implies

max
(︂
1

2
|𝑆𝑑𝑝 |+

1

2
(𝑝− 𝑗⋆), |𝑆𝑑𝑝 | −

1

2
(𝑝− 𝑗⋆)

)︂
≤ |𝑆𝑑𝑝 |,

which finishes the proof.

Now we will bound the expected number of iterations of the outermost while-
loop.

Lemma 5.3.4. The expected number of times that the outermost while-loop (at line 9)
is executed by the procedure Extend is at most 𝑂(log(𝑛)).

Proof. Let 𝑟1, . . . , 𝑟𝑚 denote the roots returned by Roots(𝑇,ℒ0,ℒ0,∞). For 𝑗 ∈
[𝑚], let ℓ𝑗 and 𝑢𝑗 respectively denote the largest good value and the smallest non-
good value under root 𝑟𝑗 . Let𝐴ℓ(ℒ) := {𝑟𝑗 : ℓ𝑗 > ℒ} and𝐴𝑢(𝒰) := {𝑟𝑗 : 𝑢𝑗 < 𝒰}.
Observe that Roots(𝑇,ℒ0,ℒ,𝒰) = 𝐴ℓ(ℒ) ∪𝐴𝑢(𝒰) for any ℒ ≤ 𝒰 .

Let ℒ𝑖 and 𝒰𝑖 denote the values of ℒ and 𝒰 at the start of the 𝑖th iteration. After
an iteration 𝑖 in which root 𝑟𝑗 was selected, the algorithm updates ℒ and 𝒰 such
that ℒ𝑖+1 = max(ℒ, ℓ𝑗) and 𝒰𝑖+1 = min(𝒰 , 𝑢𝑗). Observe that ℒ𝑖 is nondecreasing
and that 𝒰𝑖 is nonincreasing.
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We will now show that if a root from 𝐴ℓ(ℒ𝑖) is selected in iteration 𝑖, then the
expected size of 𝐴ℓ(ℒ𝑖+1) is at most half that of 𝐴ℓ(ℒ𝑖). This will imply that in
expectation only log(𝑛) iterations are needed to make |𝐴ℓ(ℒ)| = 1.

Letℱ𝑖 be the filtration containing all information up till iteration 𝑖. Let𝑋𝑖 denote
the value of |𝐴ℓ(ℒ𝑖)|. Let (𝑠𝑘)𝑘≥1 be the subsequence consisting of iteration indices
𝑖 in which a root from 𝐴ℓ(ℒ𝑖) is selected. Because roots are selected uniformly at
random, we have E[𝑋𝑠𝑘+1

| ℱ𝑠𝑘 ] ≤ 1
2𝑋𝑠𝑘 .

Let 𝑌𝑖 = max(log(𝑋𝑖), 0). Note that when 𝑌𝑠𝑘 ≥ 2, we have E[𝑌𝑠𝑘+1
| ℱ𝑠𝑘 ] =

E[log(𝑋𝑠𝑘+1
) | ℱ𝑠𝑘 ] ≤ log(E[𝑋𝑠𝑘+1

| ℱ𝑠𝑘 ]) ≤ 𝑌𝑠𝑘 − 1. Let 𝜏 be the smallest 𝑘
such that 𝑌𝑠𝑘 = 0. Note that 𝜏 is the number of iterations 𝑖 in which a root from
𝐴ℓ(ℒ𝑖) is selected, and hence 𝜏 ≤ 𝑛. The sequence (𝑌𝑠𝑘 + 𝑘)𝑘=1,...,𝜏 is therefore
a supermartingale and 𝜏 is a stopping time. By the martingale stopping theorem
[MU05, Theorem 12.2], we have E[𝜏 ] = E[𝑌𝑠𝜏 + 𝜏 ] ≤ E[𝑌𝑠1 + 1] = log(𝑚) + 1.

Now we have shown that in expectation at most log(𝑚) + 1 iterations 𝑖 are
needed in which roots from 𝐴ℓ(ℒ𝑖) are considered. The same argument can be
repeated for 𝐴𝑢(𝒰). Since in every iteration a root from 𝐴ℓ(ℒ) or 𝐴𝑢(𝒰) is selected,
the expected total number of iterations is at most 2 log(𝑚)+ 2. This directly implies
the lemma as𝑚 ≤ |𝑇ℒ|+ 1 ≤ 𝑛+ 1.

Finally, we are able to prove the running time bound.

Lemma 5.3.5. Let 𝑅(𝑇, 𝑛, 𝑘) denote the running time of a call Extend(𝑇 , 𝑛, 𝑘, ℒ0).
Then there exists 𝐶 > 0 such that

E[𝑅(𝑇, 𝑛, 𝑘)] ≤ 5𝐶(𝑛− 𝑘) log(𝑛)3 + 𝐶𝑛 log(𝑛)2.

Proof. We will prove this with induction on 𝑟 := ⌈log(𝑛)⌉. For 𝑟 = 1, we have
𝑛 ≤ 2. In this case 𝑅 is constant, proving our induction base.

Now consider a call Extend(𝑇 , 𝑛, 𝑘, ℒ0) and assume the induction claim is
true when ⌈log(𝑛)⌉ ≤ 𝑟 − 1. Let 𝑝 be the number of iterations of the outer-most
while-loop that are executed.

We will first consider the running time induced by the base call itself, excluding
any recursive subcalls. Note that all of this running time is incurred by the calls
to the procedures DFS, Roots and GoodValues, plus the cost of moving to the
corresponding node before each of these calls. In the base call, the procedure will
only move between nodes that are among the ones with the 𝑛 smallest values, or
the nodes directly below them. For this reason, we can upper bound the cost of each
movement action by a running time of 𝑂(𝑛).

• On line 12, 13, 23 each call DFS incurs a running time of at most𝑂(𝑛). Each of
these lines will be executed 𝑝 times, incurring a total running time of 𝑂(𝑝𝑛).
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• On line 17 each call DFS(𝑇 , ℒ′, 𝑛) incurs a running time of at most 𝑂(𝑛). The
code will be executed 𝑂(𝑝 log(𝑛)) times since 𝑐′ doubles after every iteration
of the inner loop and never grows larger than 𝑛, thus incurring a total running
time of 𝑂(𝑝𝑛 log(𝑛)).

• The call to GoodValues on line 20 takes𝑂(𝑛 log(𝑛)) time. The line is executed
at most 𝑝 times, so the total running time incurred is 𝑂(𝑝𝑛 log(𝑛)).

Adding up all the running times listed before, we see that the total running time
incurred by the non-recursive part is 𝑂(𝑝𝑛 log(𝑛)). By Lemma 5.3.4, E[𝑝] ≤ log(𝑛).
Hence, we can choose 𝐶 such that the expected running time of the non-recursive
part is bounded by

𝐶𝑛 log(𝑛)2.

Now we move on to the recursive part of the algorithm. All calls to Extend(𝑇 ,
𝑛, 𝑘, ℒ0) with 𝑘 = 0 will have 𝑛 = 1, so each of these calls takes only 𝑂(1) time.
Hence, we can safely ignore these calls.

Let 𝑧 be the number of recursive calls to Extend(𝑇 , 𝑛, 𝑘, ℒ0) that are done from
the base call with 𝑘 ≥ 1. Let 𝑇𝑖, 𝑘𝑖, 𝑛𝑖 for 𝑖 ∈ [𝑧] be the arguments of these function
calls. Note that 𝑛/2 ≥ 𝑛− 𝑘 ≥ 𝑛𝑖 ≥ 2 for all 𝑖. By the induction hypothesis, the
expectation of the recursive part of the running time is:

E
[︂ 𝑧∑︁
𝑖=1

𝑅(𝑇𝑖, 𝑛𝑖, 𝑘𝑖)

]︂
≤ E

[︃
𝑧∑︁

𝑖=1

5𝐶(𝑛𝑖 − 𝑘𝑖) log(𝑛𝑖)3 + 𝐶𝑛𝑖 log(𝑛𝑖)2
]︃

≤ 5𝐶 log(𝑛/2)3 E

[︃
𝑧∑︁

𝑖=1

𝑛𝑖 − 𝑘𝑖

]︃
+ 𝐶 log(𝑛/2)2 E

[︃
𝑧∑︁

𝑖=1

𝑛𝑖

]︃

≤ 5𝐶(log(𝑛)− 1) log(𝑛)2 E

[︃
𝑧∑︁

𝑖=1

𝑛𝑖 − 𝑘𝑖

]︃
+ 𝐶 log(𝑛)2 E

[︃
𝑧∑︁

𝑖=1

𝑛𝑖

]︃
≤ 5𝐶(log(𝑛)− 1) log(𝑛)2(𝑛− 𝑘) + 5𝐶 log(𝑛)2(𝑛− 𝑘)
≤ 5𝐶(𝑛− 𝑘) log(𝑛)3.

Here we used Lemma 5.3.3 as well as the fact that
∑︀𝑧

𝑖=1 𝑛𝑖 ≤ 4(𝑛− 𝑘). To see why
the latter inequality is true, consider an arbitrary root 𝑞 that has 𝑞 values under it that
are good (with respect to the base call). Now

∑︀𝑧
𝑖=1 1𝑇𝑖=𝑇 (𝑞)𝑛𝑖 ≤

∑︀⌈log(𝑠+1)⌉
𝑖=2 2𝑖 ≤

2⌈log(𝑠+1)⌉+1 ≤ 4𝑠. In total there are 𝑛− 𝑘 good values under the roots, and hence∑︀𝑧
𝑖=1 𝑛𝑖 ≤ 4(𝑛− 𝑘).
Adding the expected running time of the recursive and the non-recursive part,

we see that

E[𝑅(𝑇, 𝑛, 𝑘)] ≤ 5𝐶(𝑛− 𝑘) log(𝑛)3 + 𝐶𝑛 log(𝑛)2.
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This now implies the desired running time for the procedure Select.

Theorem 5.3.6. The procedure Select(𝑛) runs in expected 𝑂(𝑛 log(𝑛)3) time.

Proof. The key idea is that Select calls Extend(𝑇, 𝑘′, 𝑘,ℒ) at most ⌈log(𝑛)⌉ times
with parameters (𝑘′, 𝑘) = (2𝑖, 2𝑖−1) for 𝑖 ∈ {1, . . . , ⌈log(𝑛)⌉}. By Lemma 5.3.5, the
running time of Select can thus be upper bounded by

⌈log(𝑛)⌉∑︁
𝑖=1

E[𝑅(𝑇, 2𝑖, 2𝑖−1)] ≤ 5𝐶 log(𝑛)3
⌈log(𝑛)⌉∑︁
𝑖=1

(2𝑖 − 2𝑖−1) +

⌈log(𝑛)⌉∑︁
𝑖=1

𝐶𝑛 log(𝑛)2

= 𝑂(𝑛 log(𝑛)3).

Space complexity analysis

We prove in this section the space complexity of our main algorithm.

Theorem 5.3.7. The procedure Select(𝑛) runs in 𝑂(log(𝑛)) space.

Proof. Observe that it is enough to prove that the statement holds for Extend(𝑇, 𝑛, 𝑘,ℒ)
with 𝑘 ≥ 𝑛/2, since the memory can be freed up (only keeping the returned value
in memory) after every call to Extend in the Select(𝑛) algorithm.

Moreover, observe that the subroutines DFS, Roots and GoodValues all require
𝑂(1) memory, as argued in their respective analyses. Any call Extend(𝑇, 𝑛, 𝑘,ℒ)
only makes recursive calls Extend(𝑇 (𝑟), 𝑛̂, 𝑘, ℒ̂) with 1 ≤ 𝑛̂ ≤ 𝑛− 𝑘 ≤ 1

2𝑛. So the
depth of the recursion is at most log(𝑛), and the space complexity of the algorithm
is 𝑂(log(𝑛)).

5.4 Lower bound

No lower bound is known for the running time of the selection problem on explorable
heaps. However, we will show that any (randomized) algorithm with space complex-
ity at most 𝑠, has a running time of at least Ω(𝑛 log𝑠(𝑛)). Somewhat surprisingly,
the tree that is used for the lower bound construction is very simple: a root with
two trails of length 𝑂(𝑛) attached to it.

We will make use of a variant of the communication complexity model. In this
model a totally ordered set𝑊 is given, which is partitioned into (𝑆𝐴, 𝑆𝐵). There are
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two agents𝐴 and𝐵, that have access to the sets of values in 𝑆𝐴 and 𝑆𝐵 respectively.
We have |𝑆𝐴| = 𝑛+1 and |𝑆𝐵| = 𝑛. Assume that all values 𝑆𝐴 and 𝑆𝐵 are different.
Now consider the problem where player 𝐴 wants to compute the median, that is the
(𝑛+ 1)th smallest value of𝑊 .

Because the players only have access to their own values, they need to commu-
nicate. For this purpose they use a protocol, that can consist of multiple rounds. In
every odd round, player 𝐴 can do computations and send units of information to
player 𝐵. In every even round, player 𝐵 does computations and sends information
to player 𝐴. We assume that sending one value from 𝑆𝐴 or 𝑆𝐵 takes up one unit of
information. Furthermore, we assume that, except for comparisons, no operations
can be performed on the values. For example, the algorithm cannot do addition or
multiplication on the values.

We will now reduce the median computation problem to the explorable heap
selection problem.

Lemma 5.4.1. If there is a (randomized) algorithm that solves SELECT(3𝑛) in 𝑓(𝑛)𝑛
time and 𝑔 space, then there is a (randomized) protocol for median computation that
uses 𝑓(𝑛)/2 rounds in each of which at most 𝑔 units of information are sent.

Proof. Consider arbitrary sets 𝑆𝐴 and 𝑆𝐵 with |𝑆𝐴| = 𝑛 + 1 and |𝑆𝐵| = 𝑛 and
𝑆𝐴 ∩ 𝑆𝐵 = ∅. Introduce a new element 𝑂, such that 𝑂 < 𝑥 for all 𝑥 ∈ 𝑆𝐴 ∪ 𝑆𝐵 .
Let 𝑀𝐴 and 𝑀𝐵 be two sets with |𝑀𝐴| = |𝑀𝐵| = 𝑛 and 𝑂 < 𝑦 < 𝑥 for all
𝑦 ∈ 𝑀𝐴 ∪𝑀𝐵 and 𝑥 ∈ 𝑆𝐴 ∪ 𝑆𝐵 . Write 𝑆𝐴 = {𝑎1, . . . , 𝑎𝑛+1}. Now consider a
subtree for which the root node has value 𝑎1. Let every node that has value 𝑎𝑖 have
a child with value 𝑎𝑖+1 and another child with some value that is larger than any
value in 𝑆𝐴 ∪ 𝑆𝐵 ∪𝑀𝐴 ∪𝑀𝐵 . We will call this a trail of 𝑆𝐴.

O

𝑀𝐴

𝑆𝐴

𝑀𝐵

𝑆𝐵

Now we will construct a labeled tree in the following way: create a tree with a root
node of value 0. Attach a trail of𝑀𝐴 as the left child of this root and a trail of𝑀𝐵

as the right child. Attach a trail of 𝑆𝐴 as a child of the largest node in𝑀𝐴 and do
the same for a trail of𝑀𝐵 under the largest node of 𝑆𝐵 . The resulting tree will now
look as shown in the above picture.
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Observe that the 3𝑛th smallest value in this tree is the median of 𝑆𝐴 ∪ 𝑆𝐵 . Now
we can view the selection algorithm as an algorithm for median computation if we
consider moving between 𝑆𝐴 and 𝑆𝐵 in the tree as sending the 𝑔 units of information
that are in memory to the other player. Because moving between the two sets takes
at least 2𝑛 steps, the number of rounds in the corresponding communication protocol
is at most 𝑓(𝑛)𝑛

2𝑛 = 𝑓(𝑛)/2, proving the statement.

Lemma 5.4.2. Let 𝑆 ⊆ [𝑛] be a randomly distributed subset of [𝑛] with size |𝑆| ≤ 𝑘 ≤
𝑛. Then for ℓ ≤ 𝑛

8𝑘 there exists a length-ℓ interval⊆ [𝑛] (i.e. 𝐼 = {𝑖, 𝑖+1, . . . , 𝑖+ℓ−1})
such that: Pr[𝑆 ∩ 𝐼 ̸= ∅] ≤ 1

4 .

Proof. Let ℐℓ be the set of length-ℓ intervals in [𝑛]. We have |ℐℓ| = 𝑛 − ℓ + 1.
Observe that any value in [𝑛] is contained in at most ℓ elements of ℐℓ. Hence, for
any set 𝑆 of size at most 𝑘, there are at most 𝑘 · ℓ elements of ℐℓ that contain any of
the elements of 𝑆. That is: |{𝐼 ∈ ℐℓ : 𝐼 ∩ 𝑆 ̸= ∅}| ≤ 𝑘 · ℓ. This implies that for a
randomly distributed set 𝑆 ⊆ [𝑛] we also have:

∑︁
𝐼∈ℐℓ

Pr
𝑆
[𝐼 ∩ 𝑆 ̸= ∅] =

∑︁
𝐼∈ℐℓ

E𝑆 [1𝐼∩𝑆 ̸=∅] = E𝑆

⎡⎣∑︁
𝐼∈ℐℓ

1𝐼∩𝑆 ̸=∅

⎤⎦
= E𝑆 [|{𝐼 ∈ ℐℓ : 𝐼 ∩ 𝑆 ̸= ∅}|] ≤ 𝑘 · ℓ.

So there must be an 𝐼 ∈ ℐℓ with:

Pr
𝑆
[𝐼 ∩ 𝑆 ̸= ∅] ≤ 𝑘 · ℓ

|ℐℓ|
≤ 𝑘 · ℓ
𝑛− ℓ+ 1

≤
𝑘 · 𝑛

8𝑘
1
2𝑛

=
1

4
.

Theorem 5.4.3. Any randomized protocol for median computation that sends at most
𝑔 units of info per round, takes at least Ω(log𝑔+1(𝑛)) rounds in expectation.

Proof. We will instead prove the following result for a symmetric version of median
computation, because this makes the proof a bit easier. In this setting, we have
|𝑆𝐴| = |𝑆𝐵| = 𝑛 and the objective is to find both the 𝑛th and the (𝑛+1)th smallest
element of 𝑆𝐴 ∪𝑆𝐵 . We will call the set consisting of these two values the 2-median
of 𝑆𝐴 ∪ 𝑆𝐵 and we will denote it by 2median(𝑆𝐴 ∪ 𝑆𝐵). Because this problem can
be trivially solved by appending two rounds to any median-computation algorithm,
proving a lower bound for this case is sufficient.

Let 𝑔′ = 𝑔 + 1. We can assume that 𝑔 ≥ 1, and hence 𝑔′ ≥ 2. We will prove
with induction on 𝑛 that the expected number of rounds to compute the median is at
least 1

10 log𝑔′(𝑛)− 9. For 𝑛 < 28(𝑔′)2, this is trivial. Now let 𝑛 ≥ 28(𝑔′)2. Assume
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that the claim is true for values strictly smaller than 𝑛. We will now prove the claim
for 𝑛.

Consider an arbitrary randomized algorithm. Let 𝑉𝑖 be the set of indices in 𝑆𝑝𝑖
of the values that are emitted during the round 𝑖. Observe that the distribution of
the set 𝑉1 does not depend on the input, because player 𝐴 only has access to his
own set of 𝑛 values that he can compare to each other. Order the values in 𝑆𝐴 by
their values as 𝑥1, . . . , 𝑥𝑛. Order the values of 𝑆𝐵 in decreasing order as 𝑦1, . . . , 𝑦𝑛.

Let ℓ = ⌊ 𝑛
8𝑔 ⌋. From Lemma 5.4.2 it follows that there exists an interval 𝐼 =

{𝑎, . . . , 𝑎+ ℓ− 1} ⊆ [𝑛] such that Pr[𝑉1 ∩ 𝐼 ̸= ∅] ≤ 1
4 . Now let 𝐿 = {1, . . . , 𝑎− 1}

and 𝑈 = {𝑎 + ℓ, . . . , 𝑛}. Observe that {𝐿, 𝐼, 𝑈} forms a partition of [𝑛]. Now
order the values in the sets such that we have 𝑦𝑢 < 𝑥𝑙 < 𝑦𝑖 < 𝑥𝑢 < 𝑦𝑙 for all
𝑙 ∈ 𝐿, 𝑢 ∈ 𝑈, 𝑖 ∈ 𝐼 . Note that this fixes the ordinal index of any element in 𝑆𝐴∪𝑆𝐵 ,
except for the elements 𝑥𝑖 and 𝑦𝑖 for 𝑖 ∈ 𝐼 .

Condition on the event that 𝐼 ∩ 𝑉1 = ∅. Observe that in this case, the results of
all comparisons that player 2 can do in the second round have been fixed. Hence, 𝑉2
will be a random subset of [𝑛], whose distribution will not depend on the order of
the values 𝑥𝑎, . . . , 𝑥𝑎+ℓ+1 with respect to 𝑦1, . . . , 𝑦𝑛.

Let ℓ′ = ⌊ ℓ
8𝑔 ⌋. From Lemma 5.4.2 there exist an interval 𝐼 ′ = {𝑎′, . . . , 𝑎′ + ℓ′ −

1} ⊆ 𝐼 such that Pr[𝐼 ′ ∩ 𝑉2 ̸= ∅ | 𝐼 ∩ 𝑉1 = ∅] ≤ 1
4 . Define 𝐿′ = {𝑎, . . . , 𝑎′ − 1}

and 𝑈 ′ = {𝑎′ + ℓ′, . . . , 𝑎 + ℓ − 1}. Observe that {𝐿′, 𝐼 ′, 𝑈 ′} forms a partition of
𝐼 . We now order the values in the sets such that we have 𝑦𝑢 < 𝑥𝑙 < 𝑦𝑖 < 𝑥𝑢 < 𝑦𝑙
for all 𝑙 ∈ 𝐿′, 𝑢 ∈ 𝑈 ′, 𝑖 ∈ 𝐼 ′. Note that we have now fixed the ordinal index of any
element in 𝑆𝐴 ∪ 𝑆𝐵 , except for the elements 𝑥𝑖 and 𝑦𝑖 for 𝑖 ∈ 𝐼 ′.

Because 𝐼 ′ ⊆ 𝐼 , we have Pr[𝐼 ′ ∩ (𝑉1 ∪ 𝑉2) ̸= ∅] ≤ Pr[𝐼 ∩ 𝑉1 ̸= ∅] + Pr[𝐼 ′ ∩
𝑉2 ̸= ∅ | 𝑆 ∩ 𝑉1 = ∅] ≤ 1

4 + 1
4 = 1

2 . Now define 𝑆′
𝐴 = {𝑥𝑖 : 𝑖 ∈ 𝐼 ′} and

𝑆′
𝐵 = {𝑦𝑖 : 𝑖 ∈ 𝐼 ′}. Observe that 2median(𝑆𝐴 ∪ 𝑆𝐵) = 2median(𝑆′

𝐴 ∪ 𝑆′
𝐵). So the

algorithm can now be seen as an algorithm to compute the 2-median of 𝑆′
𝐴 ∪ 𝑆′

𝐵 .
However, with some probability 𝜙 := 𝑃𝑟[𝐼 ′ ∩ (𝑉1 ∪ 𝑉2) = ∅] ≥ 1

2 , no information
about 𝑆′

𝐴 and 𝑆′
𝐵 is transmitted in the first two rounds. So, we can consider the

algorithm that leaves out these two first rounds whenever this happens. If 𝑅′ is
the number of rounds that this algorithm takes, then E[𝑅′] = 𝜙E[𝑅 − 2] + (1 −
𝜙)E[𝑅] = E[𝑅]− 2𝜙 ≤ E[𝑅]− 1.

By our induction hypothesis it follows that𝑅′ will satisfyE[𝑅′] ≥ 1
10 log𝑔′(|𝑆′

𝐵|)−
9 = 1

8 log𝑔′(ℓ′) − 9 = 1
10(log𝑔′(𝑛) − 2 log𝑔′(8𝑔) − 2) − 9 ≥ 1

10 log𝑔′(𝑛) − 10. So
E[𝑅] ≥ E[𝑅′] + 1 ≥ 1

10 log𝑔′(𝑛)− 9.

By Lemma 5.4.1, this directly implies:
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Theorem 5.4.4. The time complexity of any randomized algorithm for SELECT(𝑛)
with at most 𝑔 units of storage is Ω(log𝑔+1(𝑛)𝑛).

5.5 Conclusion

We have introduced a new algorithm for the explorable heap selection problem with
running time 𝑂(𝑛 log(𝑛)3) with space complexity 𝑂(log(𝑛)). We also show that
any algorithm of the same space complexity will need at leastΩ(𝑛 log(𝑛)/ log log𝑛).
It is an interesting open problem to further close this gap.

This question becomes even more interesting in the full-space setting. Here, our
algorithm is still the best known algorithm, but best known lower bound is only
Ω(𝑛). This raises the question whether there is a better algorithm for this setting.

Another interesting aspect is the fact that our algorithm is a randomized
algorithm. While the algorithm from [KSW86] is also randomized, their algorithm
can be derandomized at small cost to the space complexity. Our algorithm, on the
other hand, fundamentally relies on randomness. It would be interesting to see if
there is a deterministic algorithm with similar running time. Such a deterministic
algorithm would also work against adaptive adversaries, while our algorithm only
works against oblivious adversaries.
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Chapter 6

Online hypergraph matching

The problem of online matching was first studied for bipartite graphs with one-sided
vertex arrivals. In this setting it has been shown that the optimal competitive ratio
is 1− 1/𝑒 for both the integral and the fractional version of the problem. Since then,
there has been considerable effort to find optimal competitive ratios for other related
settings.

In this chapter, we go beyond the graph case and study the online matching
problem on 𝑘-uniform hypergraphs. For 𝑘 = 3, we provide an optimal primal-dual
fractional algorithm, which achieves a competitive ratio of (𝑒−1)/(𝑒+1) ≈ 0.4621.
We also present a carefully constructed adversarial instance, which shows that this
ratio is in fact optimal. For 𝑘 ≥ 3, we give a simple integral algorithm which
performs better than greedy when the online nodes have bounded degree.

6.1 Introduction

Online matching is a classic problem in the field of online algorithms. It was
first introduced in the seminal work of Karp, Vazirani and Vazirani [KVV90], who
considered the bipartite version with one-sided vertex arrivals. In this setting, we
are given a bipartite graph where vertices on one side are known in advance (offline),
and vertices on the other side arrive sequentially (online). When an online vertex
arrives, it reveals its incident edges, at which point the algorithm must decide how
to match it (or not to match it) irrevocably. The goal is to maximize the cardinality of
the resulting matching. Karp et al. [KVV90] gave an elegant randomized algorithm
Ranking, which achieves the optimal competitive ratio of 1− 1/𝑒.

In certain applications, each offline vertex may be matched more than once.
Examples include matching online jobs to servers, or matching online impressions
to advertisers. This is the online 𝑏-matching model of Kalyanasundaram and Pruhs
[KP00], where 𝑏 ≥ 1 is the maximum number of times an offline vertex can be
matched. As 𝑏 and the number of online vertices tend to infinity, it in turn captures

The contents of this chapter are based on joint work with Danish Kashaev and Zhuan Khye Koh
[BKK24].
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the fractional relaxation of the Karp et al. [KVV90] model. This means that the
algorithm is allowed to match an online node fractionally to multiple neighbors,
as long as the total load on every vertex does not exceed 1. For this problem, it is
known that the deterministic algorithm Balance (or Water-Filling) achieves the
optimal competitive ratio of 1− 1/𝑒.

Online hypergraph matching

The online bipartite matching can be naturally generalized to hypergraphs as follows.
For 𝑘 ≥ 2, let ℋ = (𝑉,𝑊,𝐻) be a 𝑘-uniform hypergraph with offline vertices 𝑉 ,
online vertices 𝑊 and hyperedges 𝐻 . Every hyperedge ℎ ∈ 𝐻 contains 𝑘 − 1
elements from 𝑉 and 1 element from𝑊 . Just like before, the online vertices arrive
sequentially with their incident hyperedges, and the goal is to select a large matching.
The greedy algorithm is 1/𝑘-competitive. On the other hand, no integral algorithm
can be 2/𝑘-competitive [TU24]1. A major open question is whether there exists an
integral algorithm better than greedy.

For the fractional version of the problem, Buchbinder and Naor [BN09] con-
structed an instance on which any algorithm is at most 𝐻𝑘-competitive, where 𝐻𝑘

is the 𝑘th harmonic number. In particular, this shows that no algorithm can be
1/ log 𝑘-competitive. They also gave a deterministic algorithm which is Ω(1/ log 𝑘)-
competitive. In fact, their results apply to the more general setting of online packing
linear programs, in which variables arrive sequentially. In the context of hypergraphs,
this means that the hyperedges arrive sequentially. Recently, it was shown that for
this edge-arrival model on 𝑘-uniform hypergraphs, the algorithm can be fine-tuned to
achieve a competitive ratio of (1−𝑜(1))/ log 𝑘 [TU24], which reduces the gap to the
upper bound from multiplicative to additive. Note that for 𝑘-uniform hypergraphs,
there is a trivial reduction from this edge-arrival model to our vertex-arrival model
on (𝑘 + 1)-uniform hypergraphs, by adding degree 1 online nodes.

One might wonder whether algorithms for the fractional version of the problem
can be converted into integral algorithms. In the 𝑏-matching model, in which vertices
can be matched to at most 𝑏 hyperedges, this can be done through randomized
rounding whenever 𝑏 = Ω(log 𝑘). This way, a randomized integral algorithm can
be obtained that is Ω(1/ log 𝑘)-competitive in expectation. We provide a proof in
Section 6.B. However, this method fails for smaller values of 𝑏.

The aforementioned results show that asymptotically, both integral and fractional
versions of the online matching problem on 𝑘-uniform hypergraphs are essentially
settled (up to an additive constant). However, our understanding of the problem

1In [TU24], it is shown that no algorithm can be (2 + 𝑓(𝑘))/𝑘-competitive for some positive
function 𝑓 with 𝑓(𝑘) = 𝑜(1). Using a similar technique one can show that no algorithm can be
2/𝑘-competitive. We provide a proof in Section 6.A.
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for small values of 𝑘 (other than 𝑘 = 2) remains poor. Many applications of online
hypergraph matching in practice have small values of 𝑘. For instance, in ride-sharing
and on-demand delivery services [PSST22], 𝑘 − 1 represents the capacity of service
vehicles, which is often small. Another example is network revenue management
problems [MRST20]. In this setting, given a collection of limited resources, a sequence
of product requests arrive over time. When a product request arrives, we have to
decide whether to accept it irrevocably. Accepting a product request generates profit,
but also consumes a certain amount of each resource. The goal is to devise a policy
which maximizes profit. In this context, 𝑘 − 1 represents the maximum number of
resources used by a product. As Ma et al. [MRST20] noted, many of these problems
have small values of 𝑘. In airlines, for example, 𝑘 − 1 corresponds to the maximum
number of flight legs included in an itinerary, which usually does not exceed two or
three.

Our contributions

Motivated by the importance of online hypergraph matching for small values of 𝑘,
we focus on 3-uniform hypergraphs, with the goal of obtaining tighter bounds. Our
main result is a tight competitive ratio for the fractional version of this problem.

Theorem 6.1.1. For the online fractional matching problem on 3-uniform hypergraphs,
there is a deterministic (𝑒 − 1)/(𝑒 + 1)-competitive algorithm. Furthermore, every
algorithm is at most (𝑒− 1)/(𝑒+ 1)-competitive.

The deterministic algorithm in Theorem 6.1.1 belongs to the class of Water-
Filling algorithms. It uses the function 𝑓(𝑥) := 𝑒𝑥/(𝑒 + 1) to decide which
hyperedges receive load. In particular, for every online vertex 𝑤, the incident
hyperedges ℎ = {𝑢, 𝑣, 𝑤} ∈ 𝛿(𝑤)whichminimize𝜙(ℎ) := 𝑓(𝑥(𝛿(𝑢)))+𝑓(𝑥(𝛿(𝑣)))
receive load until 𝜙(ℎ) ≥ 1.

The upper bound in Theorem 6.1.1 is technically the most challenging part of the
chapter. We construct an instance which is adaptive to the actions of the algorithm.
The key idea is to combine two hard instances for online matching on bipartite graphs
[KVV90; Gam+19]. The instance in [KVV90], designed for one-sided vertex-arrivals,
relies on uncertainty about the neighbors of each vertex. On the other hand, the
instance in [Gam+19], designed for edge-arrivals, relies on uncertainty about the size
of the graph. To make the combination work, a more fine-grained understanding
of these two instances is necessary. An important ingredient of our analysis is the
(fractional) degree distribution of vertices in the edge-arrival instance [Gam+19].
We remark that our instance is a tripartite hypergraph.

Our next result concerns the online integral matching problem on 𝑘-uniform
hypergraphs. We show that one can do better than the greedy algorithm if the
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online nodes have bounded degree. It is achieved by the simple algorithm Random:
for every online vertex 𝑤, uniformly select a hyperedge among all the hyperedges
incident to 𝑤 which are disjoint from the current matching.

Theorem 6.1.2. For the online matching problem on 𝑘-uniform hypergraphs where
online vertices have maximum degree 𝑑, the competitive ratio of Random is at least

min
(︂

1

𝑘 − 1
,

𝑑

(𝑑− 1)𝑘 + 1

)︂
.

Note that in Theorem 6.1.2, the first term is at most the second term if and
only if 𝑑 ≤ 𝑘 − 1. Moreover, Random always performs better than the greedy
algorithm, since the latter is 1/𝑘-competitive. A nice application of Theorem 6.1.2 is
for 3-uniform hypergraphs with 𝑑 = 2. In this setting, Random is 1/2-competitive
and is in fact optimal. This is because the online matching problem on graphs under
edge arrivals is a special case of this setting (with 𝑘 = 3, 𝑑 = 1), for which an
upper bound of 1/2 is known even against fractional algorithms on bipartite graphs
[Gam+19].

Since every randomized algorithm for integral matching induces a deterministic
algorithm for fractional matching, the upper bound of (𝑒 − 1)/(𝑒 + 1) ≈ 0.4621
in Theorem 6.1.1 also applies to the integral problem on 3-uniform hypergraphs.
However, the best known lower bound is 1/3, given by the greedy algorithm. An
interesting question for future research is whether there exists an integral algorithm
better than greedy on 3-uniform hypergraphs.

Related work

Since the online matching problem was introduced in [KVV90], it has garnered
a lot of interest, leading to extensive follow-up work. We refer the reader to the
excellent survey by Mehta [Meh13] for navigating this rich literature. The original
analysis of Ranking [KVV90] was simplified in a series of papers [BM08; DJK13;
GM08; EFFS21]. Many variants of the problem have been studied, such as the online
𝑏-matching problem [KP00], and its extension to the AdWords problem [BJN07;
DJ12; HZZ20; MSVV07]. Weighted generalizations have been considered, e.g., vertex
weights [AGKM11; HTWZ19] and edge weights [FHTZ22]. Weakening the adversary
by requiring that online nodes arrive in a random order has also been of interest
[KMT11; MY; KRTV13]. Another line of research explored more general arrival
models such as two-sided vertex arrival [WW15], general vertex arrival [Gam+19],
edge arrival [BST19; Gam+19], and general vertex arrival with departure times
[Hua+20; HTWZ20; Ash+23].

In contrast, the literature on the online hypergraphmatching problem is relatively
sparse. Most work has focused on stochastic models, such as the random-order
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model. Korula and Pal [KP09] first studied the edge-weighted version under this
model. For 𝑘-uniform hypergraphs, they gave an Ω(1/𝑘2)-competitive algorithm.
This was subsequently improved to Ω(1/𝑘) by Kesselheim et al. [KRTV13]. Ma
et al. [MRST20] gave a 1/𝑘-competitive algorithm under ‘nonstationary’ arrivals.
Pavone et al. [PSST22] studied online hypergraph matching with delays under the
adversarial model. At each time step, a vertex arrives, and it will depart after 𝑑 time
steps. A hyperedge is revealed once all of its vertices have arrived. Note that their
model is incomparable to ours because every vertex has the same delay 𝑑.

In the prophet-IID setting, in which for each online node the weight-function
is independently sampled from the same distribution, an 𝑂(log 𝑘/𝑘) hardness is
known [MSV23]. For a good overview of known results for random settings we refer
to [MSV23].

Hypergraph matching on 𝑘-uniform hypergraphs is a well-studied problem
in the offline setting. It is known to be NP-hard to approximate within a factor
Ω(log(𝑘)/𝑘) [HSS06]. The factor between the value of the natural LP-relaxation
and the optimal integral solution is also known to be at least 1/(𝑘 − 1 + 1/𝑘) for
𝑘-uniform hypergraphs [CL12].

A special case that has been studied is the restriction to 𝑘-partite graphs, where
the vertices are partitioned into 𝑘 sets and every hyperedge contains exactly one
vertex from each set. This setting is known as 𝑘-dimensional matching. In this setting,
the optimal solution is known to be at least 1/(𝑘 − 1) times the optimal objective
to the standard LP-relaxation [HSS06]. For 𝑘 = 3, the best known polynomial
time approximation algorithm gives a (2/3 − 𝜀)-approximation [CGM13]. Since
our construction in Section 6.4 is 3-partite, it also gives an upper bound on the
competitive ratio of any fractional algorithm for online 3-dimensional matching.

Organization

In Section 6.2, we give the necessary preliminaries and discuss notation. Section 6.3
presents the optimal primal-dual fractional algorithm for 3-uniform hypergraphs,
which shows the first part of Theorem 6.1.1. Section 6.4 complements this with
a tight upper bound, proving the second part of Theorem 6.1.1. The proof of our
result for hypergraphs with online vertices of bounded degree is in Section 6.5. We
conclude with an outlook on future research in Section 6.6.
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6.2 Preliminaries

Given a hypergraphℋ = (𝑉,𝐻), where 𝐻 denotes the hyperedges, the maximum
matching problem consists of finding a maximum cardinality subset of disjoint
hyperedges. The primal and dual linear programming relaxations for this problem
are given by:

max
∑︁
ℎ∈𝐻

𝑥ℎ∑︁
ℎ∈𝛿(𝑣)

𝑥ℎ ≤ 1 ∀𝑣 ∈ 𝑉

𝑥ℎ ≥ 0 ∀ℎ ∈ 𝐻

min
∑︁
𝑣∈𝑉

𝑦𝑣∑︁
𝑣∈ℎ

𝑦𝑣 ≥ 1 ∀ℎ ∈ 𝐻

𝑦𝑣 ≥ 0 ∀𝑣 ∈ 𝑉.

We denote by OPTLP(ℋ) the fractional offline optimal objective value of these two
linear programs, which is the same for both programs by strong duality. We denote
by OPT(ℋ) the objective value of the optimal integral offline solution for the primal
linear program, which clearly satisfies OPT(ℋ) ≤ OPTLP(ℋ).

Consider the online matching problem on 𝑘-uniform hypergraphs under vertex
arrivals. Formally, an instance consists of a 𝑘-uniform hypergraphℋ = (𝑉,𝑊,𝐻),
where 𝑊 = (𝑤1, 𝑤2, . . .) is a sequence of online nodes and 𝑉 is a set of offline
nodes. The ordering of𝑊 corresponds to the arrival order of the online nodes. Each
hyperedge ℎ ∈ 𝐻 has exactly one node in𝑊 and 𝑘 − 1 nodes in 𝑉 . At the arrival
of an online node 𝑤 ∈𝑊 , a fractional algorithm is allowed to increase 𝑥ℎ for every
ℎ ∈ 𝛿(𝑤), and an integral algorithm can irrevocably pick one of these hyperedges.

For a given algorithm 𝒜 and input instanceℋ, we denote by

val(𝒜,ℋ) :=
∑︁
ℎ∈𝐻

𝑥ℎ

the value of the (fractional) matching obtained by the algorithm on instanceℋ. A
fractional algorithm 𝒜 is called 𝜌-competitive if for any instance ℋ, val(𝒜,ℋ) ≥
𝜌 OPTLP(ℋ).

A large part of this chapter is concerned with 3-uniform hypergraphs. For a
3-uniform vertex arrival instanceℋ = (𝑉,𝑊,𝐻), we denote by Γ(ℋ) = (𝑉,𝐸) the
graph on the offline nodes with edge set

𝐸 :=
{︁
(𝑢, 𝑣) ∈ 𝑉 × 𝑉, ∃𝑤 ∈𝑊 s.t. {𝑢, 𝑣, 𝑤} ∈ 𝐻

}︁
. (6.1)

We remark that Γ(ℋ) is not a multigraph. In particular, an edge (𝑢, 𝑣) ∈ 𝐸 can have
several hyperedges in𝐻 containing it. A fractional matching 𝑥 on the hyperedges𝐻
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naturally induces a fractional matching 𝑥′ on the edges 𝐸 by setting 𝑥′𝑒 =
∑︀

𝑒⊆ℎ 𝑥ℎ
for every 𝑒 ∈ 𝐸.The value obtained by an algorithm in this model can thus also be
counted as val(𝒜,ℋ) =

∑︀
ℎ∈𝐻 𝑥ℎ =

∑︀
𝑒∈𝐸 𝑥

′
𝑒.

6.3 Optimal algorithm for 3-uniform hypergraphs

In this section, we present a primal-dual algorithm for the online fractional matching
problem on 3-uniform hypergraphs under vertex arrivals. This algorithm will turn
out to be optimal in this setting with a tight competitive ratio of (𝑒 − 1)/(𝑒 +
1) ≈ 0.4621. We define the following distribution function 𝑓 : [0, 1]→ [0, 1]:

𝑓(𝑥) :=
𝑒𝑥

𝑒+ 1
. (6.2)

When an online node 𝑤 arrives, our algorithm chooses to continuously increase
the fractional primal value on the hyperedges {𝑢, 𝑣, 𝑤} for which 𝑓(𝑥(𝛿(𝑢))) +
𝑓(𝑥(𝛿(𝑣))) is minimal. We note that this belongs to the class of water-filling algo-
rithms [KP00]. For this reason, we define the priority of a hyperedge ℎ = {𝑢, 𝑣, 𝑤}
as:

𝜙(ℎ) := 𝑓(𝑥(𝛿(𝑢))) + 𝑓(𝑥(𝛿(𝑣))). (6.3)

Algorithm 3 Water-filling fractional algorithm 𝒜 for online vertex arrival
Input : 3-uniform hypergraphℋ = (𝑉,𝑊,𝐻) with online arrivals of𝑊 .
Output : Fractional matching 𝑥 ∈ [0, 1]𝐻

when 𝑤 ∈𝑊 arrives with 𝛿(𝑤) ⊆ 𝐻 :
set 𝑥ℎ = 0 for every ℎ ∈ 𝛿(𝑤)
increase 𝑥ℎ for every ℎ = {𝑢, 𝑣, 𝑤} ∈ argminℎ∈𝛿(𝑤){𝜙(ℎ)} at rate 1
increase 𝑦𝑢 and 𝑦𝑣 at rates 𝑓(𝑥(𝛿(𝑢))) and 𝑓(𝑥(𝛿(𝑣)))
increase 𝑦𝑤 at rate 1− 𝑓(𝑥(𝛿(𝑢)))− 𝑓(𝑥(𝛿(𝑣)))

until 𝑥(𝛿(𝑤)) = 1 or 𝜙(ℎ) ≥ 1 for every ℎ ∈ 𝛿(𝑤).
return 𝑥

Theorem 6.3.1. Algorithm 3 is (𝑒− 1)/(𝑒+ 1)-competitive for the online fractional
matching problem on 3-uniform hypergraphs.

Proof. We first show that the algorithm produces a feasible primal solution. Note
that the fractional value of a hyperedge ℎ is only being increased if 𝜙(ℎ) ≤ 1. If
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𝑥(𝛿(𝑣)) = 1 for some offline node 𝑣 then for any hyperedge ℎ ∋ 𝑣, we have:

𝜙(ℎ) = 𝑓(𝑥(𝛿(𝑢))) + 𝑓(𝑥(𝛿(𝑣))) ≥ 𝑓(1) + 𝑓(0) =
𝑒+ 1

𝑒+ 1
= 1,

where 𝑢 denotes the second offline node belonging to ℎ. The value of the hyperedge
ℎ will thus not be increased anymore, proving the feasibility of the primal solution.

In order to prove the desired competitive ratio, we show that the primal-dual
solutions constructed during the execution of the algorithm satisfy:

val(𝒜) =
∑︁
ℎ∈𝐻

𝑥ℎ =
∑︁

𝑣∈𝑉 ∪𝑊
𝑦𝑣 and (6.4)∑︁

𝑣∈ℎ
𝑦𝑣 ≥ 𝜌 ∀ℎ ∈ 𝐻. (6.5)

This is enough to imply the desired competitiveness of our algorithm, since 𝑦/𝜌 ∈ R𝑉
+

is then a feasible dual solution, giving:

val(𝒜) ≥
∑︁

𝑣∈𝑉 ∪𝑊
𝑦𝑣 ≥ 𝜌 OPTLP.

Note that (6.4) holds at the start of the algorithm. Let us fix a hyperedge ℎ =
{𝑢, 𝑣, 𝑤} ∈ 𝐻 . When 𝑥ℎ is continuously being increased at rate one, the duals on
the incident nodes 𝑦𝑢, 𝑦𝑣 and 𝑦𝑤 are being increased at rate 𝑓(𝑥(𝛿(𝑢))), 𝑓(𝑥(𝛿(𝑣)))
and 1− 𝑓(𝑥(𝛿(𝑢)))− 𝑓(𝑥(𝛿(𝑣))) respectively. Observe that these rates sum up to
one. Hence, val(𝒜) =

∑︀
ℎ∈𝐻 𝑥ℎ and

∑︀
𝑣∈𝑉 ∪𝑊 𝑦𝑣 are increased at the same rate,

meaning that (6.4) holds at all times during the execution of the algorithm.
We now show that (6.5) holds at the end of the execution of the algorithm. Let us

fix an online node 𝑤 ∈𝑊 . For a given hyperedge ℎ ∈ 𝛿(𝑤), note that the algorithm
only stops increasing 𝑥ℎ, as soon as either 𝜙(ℎ) ≥ 1 or 𝑥(𝛿(𝑤)) = 1 is reached. We
distinguish these two cases for the analysis.

Let us first focus on the first case, meaning that 𝜙(ℎ) ≥ 1 has been reached
for every ℎ ∈ 𝛿(𝑤). Consider an arbitrary ℎ = {𝑢, 𝑣, 𝑤} ∈ 𝛿(𝑤). For every unit
of increase in 𝑥(𝛿(𝑢)), 𝑦𝑢 will have been increased by 𝑓(𝑥(𝛿(𝑢))). If we denote
by ℓ𝑢 := 𝑥(𝛿(𝑢)) and ℓ𝑣 := 𝑥(𝛿(𝑣)) the fractional loads on 𝑢 and 𝑣 after the last
increase on the hyperedges adjacent to 𝑤, then:

𝑦𝑢 =

∫︁ ℓ𝑢

0
𝑓(𝑠)𝑑𝑠 = 𝑓(ℓ𝑢)− 𝑓(0) and 𝑦𝑣 =

∫︁ ℓ𝑣

0
𝑓(𝑠)𝑑𝑠 = 𝑓(ℓ𝑣)− 𝑓(0),

(6.6)



6.4. Tight upper bound for 3-uniform hypergraphs 129

where we have used the fact that 𝑓 is an antiderivative of itself. Therefore,

𝑦𝑢 + 𝑦𝑣 + 𝑦𝑤 ≥ 𝑦𝑢 + 𝑦𝑣 = 𝑓(ℓ𝑢)− 𝑓(0) + 𝑓(ℓ𝑣)− 𝑓(0)

= 𝜙(ℎ)− 2𝑓(0) ≥ 1− 2𝑓(0) =
𝑒− 1

𝑒+ 1
.

Suppose now that 𝑥(𝛿(𝑤)) = 1 has been reached. In particular, this means that
for each {𝑢, 𝑣, 𝑤} ∈ 𝛿(𝑤), the rate at which 𝑦𝑤 was increased must have been at
least 1− 𝑓(ℓ𝑢)− 𝑓(ℓ𝑣) at all times, where ℓ𝑢 and ℓ𝑣 denote the fractional loads on
𝑢 and 𝑣 after that the algorithm has finished increasing the edges incident to the
online node 𝑤. Hence, we have:

𝑦𝑤 ≥ 1 · (1− 𝑓(ℓ𝑢)− 𝑓(ℓ𝑣)).

By using (6.6) we see that:

𝑦𝑢 + 𝑦𝑣 + 𝑦𝑤 ≥ 𝑓(ℓ𝑢) + 𝑓(ℓ𝑣)− 2𝑓(0) + (1− 𝑓(ℓ𝑢)− 𝑓(ℓ𝑣))

= 1− 2𝑓(0) =
𝑒− 1

𝑒+ 1
.

This proves (6.5), and thus completes the proof of the theorem.

6.4 Tight upper bound for 3-uniform hypergraphs

We now prove the second part of Theorem 6.1.1, restated below.

Theorem 6.4.1. Every algorithm is at most (𝑒− 1)/(𝑒+1)-competitive for the online
fractional matching problem on 3-uniform hypergraphs.

Overview of the construction

We prove Theorem 6.4.1 by constructing an adversarial instance that is adaptive to
the behavior of the algorithm. Themain idea is to combine the vertex-arrival instance
of Karp et al. [KVV90] and the edge-arrival instance of Gamlath et al. [Gam+19] for
bipartite graphs.

We start by giving a high-level overview of the construction. The offline
vertices of the hypergraph can be partitioned into 𝑚 sets 𝐶1, . . . , 𝐶𝑚, which we
call components. Each component can be seen as a bipartite graph with bipartition
𝐶𝑖 = 𝑈𝑖 ∪ 𝑉𝑖, where |𝑈𝑖| = |𝑉𝑖| = 𝑇 .
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The global instance consists of 𝑇 phases. In each phase 𝑡 ∈ {1, . . . , 𝑇}, the
adversary first selects a bipartite matchingℳ(𝑡)

𝑖 on each component 𝐶𝑖. Taking the
union of all these bipartite matchings gives a larger matching on the offline nodes:

ℳ(𝑡) =
𝑚⋃︁
𝑖=1

ℳ(𝑡)
𝑖 ∀𝑡 ∈ {1, . . . , 𝑇}.

After selecting the matchingℳ(𝑡) at phase 𝑡, the adversary selects the online
nodes, with their incident hyperedges, arriving in that phase. The set of online
nodes arriving in phase 𝑡 is denoted by 𝑊 (𝑡). Each node 𝑤 ∈ 𝑊 (𝑡) connects to
a subset of edges 𝐸(𝑤) ⊆ ℳ(𝑡), meaning that the hyperedges incident to 𝑤 are
{{𝑤} ∪ 𝑒 : 𝑒 ∈ 𝐸(𝑤)}.

We briefly explain how the matchingsℳ(𝑡)
𝑖 are constructed and how the edges

𝐸(𝑤) are picked:

1. On each component 𝐶𝑖, the matchingℳ(𝑡)
𝑖 is constructed based on the behav-

ior of the algorithm in phase 𝑡− 1. It draws inspiration from the edge-arrival
instance in [Gam+19], together with the function 𝑓(𝑥) = 𝑒𝑥/(𝑒+ 1) defined
in (6.2). The exact construction is described in Section 6.4 and illustrated in
Fig. 6.4.

2. For every online node 𝑤 ∈𝑊 (𝑡), the edge set 𝐸(𝑤) ⊆ℳ(𝑡) is selected based
on the behavior of the algorithm during phase 𝑡. This part can be seen as
incorporating the vertex-arrival instance in [KVV90]. The exact construction
is described in Lemma 6.4.4 and illustrated in Figure 6.2.

To summarize, the global instance is a hypergraphℋ = (𝑉,𝑊,𝐻)with offline nodes
𝑉 , online nodes𝑊 and hyperedges 𝐻 given by

𝑉 :=

𝑚⋃︁
𝑖=1

𝐶𝑖 =

𝑚⋃︁
𝑖=1

𝑈𝑖∪𝑉𝑖 𝑊 :=

𝑇⋃︁
𝑡=1

𝑊 (𝑡) 𝐻 :=

𝑇⋃︁
𝑡=1

⋃︁
𝑤∈𝑊 (𝑡)

{{𝑤}∪𝑒 : 𝑒 ∈ 𝐸(𝑤)}.

Overview of the analysis

To simplify the analysis of our instance, we will make two assumptions. First, we
need the following definition, which relates the behavior of an algorithm to the
priority function 𝜙 defined in (6.3).

Definition 6.4.2. Fix 𝜀 ∈ R. Let 𝑥 be the fractional solution given by an algorithm
𝒜 after the arrival of an online node 𝑤. We say that𝒜 is 𝜀-threshold respecting on 𝑤
if 𝜙(ℎ) =

∑︀
𝑣∈ℎ∖{𝑤} 𝑓(𝑥(𝛿(𝑣))) ≤ 1 + 𝜀 for all incident hyperedges ℎ ∈ 𝛿(𝑤) with
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Figure 6.1: An illustration of the region 𝑅 = {(𝑎, 𝑏) ∈ [0, 1]2 : 𝑓(𝑎) + 𝑓(𝑏) ≤ 1}.
The symmetric point at the boundary of the region has both coordinates ln((𝑒 +
1)/2) ≈ 0.62. When an online node 𝑤 arrives, a threshold respecting algorithm
ensures that the fractional matching 𝑥 satisfies (𝑥(𝛿(𝑢)), 𝑥(𝛿(𝑣))) ∈ 𝑅 for every
hyperedge ℎ = {𝑢, 𝑣, 𝑤} ∈ 𝛿(𝑤) with 𝑥ℎ > 0 at the end of that iteration.

𝑥ℎ > 0. We also call 𝒜 threshold respecting if 𝜀 = 0, and strictly threshold respecting
if 𝜀 < 0.

For a hyperedge ℎ = {𝑢, 𝑣, 𝑤} ∈ 𝛿(𝑤), Figure 6.1 shows the possible values of
𝑥(𝛿(𝑢)) and 𝑥(𝛿(𝑣)) such that 𝜙(ℎ) ≤ 1.

Remark 6.4.3. We emphasize that the property in Definition 6.4.2 only needs to
hold for the fractional solution 𝑥 after 𝑤 has arrived, and before the arrival of the
next online node. In particular, it is possible that 𝜙(ℎ) > 1 + 𝜀 in later iterations.

The two assumptions that we will make are:

1. The algorithm is 𝜀-threshold respecting on all online nodes in the first 𝑇 − 1
phases for some arbitrarily small 𝜀 > 0.

2. The algorithm is symmetric on each component 𝐶𝑖 = 𝑈𝑖 ∪ 𝑉𝑖. In particular,
for every 𝑡 ∈ {1, . . . , 𝑇}, the 𝑡th vertex of 𝑈𝑖 and 𝑉𝑖 have the same fractional
degrees throughout the execution of the algorithm.

In Section 6.4, we show that they can be made without loss of generality. Our proof
will now consist of two main steps:

1. In Section 6.4, we show that for each phase 𝑡 ∈ {1, . . . , 𝑇 − 1}, the value
incurred by the algorithm on that phase can be upper bounded by

𝑒− 1

𝑒+ 1
𝑚+ 𝜀𝑡𝑚+𝑂

(︁
(𝑡𝑚)2/3

)︁
.
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Figure 6.2: An illustration of the instance constructed in Lemma 6.4.4

This means that the total value obtained on the first 𝑇 −1 phases can be upper
bounded by

𝑇−1∑︁
𝑡=1

(︂
𝑒− 1

𝑒+ 1
𝑚+ 𝜀𝑡𝑚+𝑂

(︁
(𝑡𝑚)2/3

)︁)︂
≤ 𝑇𝑚

(︃
𝑒− 1

𝑒+ 1
+ 𝜀𝑇 +𝑂

(︃
𝑇 2/3

𝑚 1/3

)︃)︃

2. In Section 6.4, we show that, for every 𝑖 ∈ {1, . . . ,𝑚}, the value gained by the
algorithm on the component 𝐶𝑖 during the last phase 𝑇 can be upper bounded
by 𝑂(

√
𝑇 ) + 𝜀𝑂(𝑇 2), meaning that the algorithm gains a value of at most

𝑚 (𝑂(
√
𝑇 ) + 𝜀𝑂(𝑇 2)) for the last phase.

The offline optimal solution at the end of phase 𝑇 has size OPT = 𝑇𝑚. Hence, as
𝑇,𝑚→∞ and picking 𝑇 = 𝑜(

√
𝑚) and 𝜀 = 𝑜(1/𝑇 ), we can easily check that the

competitive ratio is upper bounded by (𝑒− 1)/(𝑒+ 1).

Bound for the first 𝑇 − 1 phases

The following lemma is an adaptation of the vertex-arrival instance for bipartite
graphs [KVV90] to tripartite hypergraphs. It gives an upper bound on the value
obtained by any fractional algorithm, parametrized by the maximum (fractional)
degree Δ ∈ [0, 1] attained by an offline node.

Lemma 6.4.4. For any (graph) matchingℳ = (𝑉,𝐸), there exists an online tripartite
hypergraph instance ℋ = (𝑉,𝑊,𝐻) such that Γ(ℋ) = ℳ and OPT(ℋ) = |ℳ|.
Moreover, for any fractional algorithm𝒜 whose returned solution 𝑥 satisfies 𝑥(𝛿(𝑣)) ≤
Δ for all offline nodes 𝑣 ∈ 𝑉 , we have

val(𝒜,ℋ) ≤ (1− 𝑒−Δ)|ℳ|+ 3

2
.
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Proof. Let us fix a fractional algorithm 𝒜 and let us fix a matchingℳ = (𝑉,𝐸) of
size 𝑛, meaning that |𝐸| = 𝑛. The adversarial online 3-uniform hypergraph instance
ℋ consists of 𝑛 online nodes𝑊 = {𝑤1, . . . , 𝑤𝑛} arriving and connecting to a subset
of edges of the matchingℳ. For every 𝑤𝑖, we denote by 𝐸(𝑤𝑖) ⊆ 𝐸 the edges of
the matching the online node 𝑤𝑖 is connected to, meaning that the 3-hyperedges
incident to 𝑤𝑖 are 𝛿(𝑤𝑖) = {𝑤𝑖 ∪ 𝑒 : 𝑒 ∈ 𝐸(𝑤𝑖)}. Let us denote by 𝑥 ∈ R𝐸 the
fractional solution generated online by algorithm 𝒜, and note that this is in fact the
induced fractional solution on 𝐸.

1. The first online node 𝑤1 connects to every edge of the matching, i.e. 𝐸(𝑤1) =
𝐸. The algorithm 𝒜 now assigns fractional value 𝑥(𝑒) to every edge 𝑒 ∈ 𝐸,
and we denote by 𝑒1 ∈ 𝐸 the edge with the lowest fractional value 𝑥(𝑒1).
Observe that 𝑥(𝑒1) ≤ 1/𝑛.

2. The second online node 𝑤2 connects to 𝐸(𝑤2) = 𝐸 ∖ {𝑒1}. The algorithm 𝒜
can thus increase the fractional values 𝑥(𝑒) for every 𝑒 ∈ 𝐸(𝑤2). We then
denote by 𝑒2 the edge in 𝐸(𝑤2) with the lowest fractional value after this
iteration, and it is easy to check that 𝑥(𝑒1) + 𝑥(𝑒2) ≤ 2/𝑛+ 1/(𝑛− 1).

3. More generally, for every 𝑘 ∈ {1, . . . , 𝑛}, the online node 𝑤𝑘 connects to
𝑛− 𝑘 + 1 edges 𝐸(𝑤𝑘) = 𝐸 ∖ {𝑒1, . . . , 𝑒𝑘−1}, and 𝑒𝑘 is defined as the edge
having the lowest fractional value at the end of the iteration of 𝑤𝑘. We thus
get a bound of

ℓ∑︁
𝑘=1

𝑥(𝑒𝑘) ≤
ℓ∑︁

𝑘=1

𝑘∑︁
𝑖=1

1

𝑛− 𝑖+ 1
∀ℓ ∈ {1, . . . , 𝑛}. (6.7)

The inner sum in (6.7) reaches Δ approximately when 𝑘 ≈ (1− 𝑒−Δ)𝑛. For higher
values of 𝑘, it is thus better to use the bound 𝑥(𝑒𝑘) ≤ Δ, which holds by assumption.
By defining 𝑝 := ⌊𝑒−Δ𝑛⌋ and 𝑞 := 𝑛 − 𝑝, we can now compute a precise upper
bound on the total value generated by the algorithm using (6.7):

val(𝐴,ℋ) =
𝑛∑︁

𝑘=1

𝑥(𝑒𝑘) ≤
𝑞∑︁

𝑘=1

𝑘∑︁
𝑖=1

1

𝑛− 𝑖+ 1
+

𝑛∑︁
𝑘=𝑞+1

Δ =

𝑞∑︁
𝑖=1

𝑞∑︁
𝑘=𝑖

1

𝑛− 𝑖+ 1
+ 𝑝Δ

=

𝑞∑︁
𝑖=1

𝑞 − 𝑖+ 1

𝑛− 𝑖+ 1
+ 𝑝Δ = 𝑞 − (𝑛− 𝑞)

𝑞∑︁
𝑖=1

1

𝑛− 𝑖+ 1
+ 𝑝Δ

= 𝑝Δ+ (𝑛− 𝑝)− 𝑝
𝑛∑︁

𝑖=𝑛−𝑞+1

1

𝑖
= 𝑝Δ+ 𝑛− 𝑝− 𝑝(𝐻𝑛 −𝐻𝑝). (6.8)
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In order to get the desired result for every value of 𝑛 ≥ 1, we now need to tightly
approximate the difference of the harmonic numbers 𝐻𝑛 −𝐻𝑝. In particular, the
well known bounds ln(𝑛)+ 1/𝑛 ≤ 𝐻𝑛 ≤ ln(𝑛+1) for every 𝑛 ∈ N are not enough
in this case. We use the equality

𝐻𝑛 = ln(𝑛) + 𝛾 + 𝜀(𝑛) for some 0 < 𝜀(𝑛) <
1

2𝑛
(6.9)

where 𝛾 = lim𝑛→∞(𝐻𝑛 − ln(𝑛)) ≈ 0.58 is Euler’s constant. Moreover, recall that

𝑒−Δ𝑛− 1 ≤ 𝑝 ≤ 𝑒−Δ𝑛. (6.10)

Using (6.9) and (6.10) together gives:

𝐻𝑛 −𝐻𝑝 = ln
(︂
𝑛

𝑝

)︂
+ 𝜀(𝑛)− 𝜀(𝑝) ≥ ln

(︁ 𝑛

𝑒−Δ𝑛

)︁
− 1

2𝑝
= Δ− 1

2𝑝
.

(6.11)

Finally, plugging (6.10) and (6.11) into (6.8) gets us the desired result for every value
of 𝑛 ∈ N :

val(𝐴,ℋ) ≤ 𝑝Δ+ 𝑛− 𝑝− 𝑝
(︂
Δ− 1

2𝑝

)︂
= 𝑛− 𝑝+ 1

2
≤ (1− 𝑒−Δ)𝑛+

3

2
.

Given a 3-uniform hypergraph instanceℋ = (𝑉,𝑊,𝐻), let Γ(ℋ) = (𝑉,𝐸) be
the graph on the offline nodes as defined in (6.1). Let 𝑥 ∈ [0, 1]𝐸 be a fractional
matching on Γ(ℋ). For an offline node 𝑢 ∈ 𝑉 , we denote its load (or fractional
degree) as ℓ𝑢 = 𝑥(𝛿(𝑢)) ∈ [0, 1]. For an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we overload the
priority function 𝜙 defined for hyperedges in (6.3) as 𝜙(𝑒) := 𝑓(ℓ𝑢) + 𝑓(ℓ𝑣).

Given an edge 𝑒 = (𝑢, 𝑣)with levels ℓ𝑢 and ℓ𝑣 below the threshold, i.e. satisfying
𝜙(𝑒) = 𝑓(ℓ𝑢) + 𝑓(ℓ𝑣) < 1, we can compute how much fractional value is needed to
put on that edge in order to make it reach priority one:

min
{︁
𝑥𝑒 ≥ 0 | 𝑓(ℓ𝑢 + 𝑥𝑒) + 𝑓(ℓ𝑣 + 𝑥𝑒) ≥ 1

}︁
= ln

(︂
𝑒+ 1

𝑒ℓ𝑢 + 𝑒ℓ𝑣

)︂
= − ln

(︁
𝑓(ℓ𝑢) + 𝑓(ℓ𝑣)

)︁
= − ln𝜙(𝑒).

A similar computation shows that if an edge 𝑒 is above the threshold, i.e. 𝜙(𝑒) ≥ 1,
the fractional value above the threshold is ln𝜙(𝑒). Note that in both cases, this
quantity is non-negative, by definition of the natural logarithm.
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Recall from Section 6.4 that our global instance consists of 𝑇 phases. In order to
analyze the value of the algorithm, we split the total value gained by the algorithm
into the value gained in each phase. Note that at the beginning of phase 𝑡, the
algorithm has already generated a certain fractional matching 𝑥(𝑡−1), meaning that
every offline node 𝑣 already has some load ℓ(𝑡−1)

𝑣 , with corresponding priorities
𝜙
(𝑡−1)
𝑒 for the edges. We denote the total value gained by an algorithm 𝒜 during

phase 𝑡 as:
val(𝑡)(𝒜) :=

∑︁
𝑒∈ℳ(𝑡)

𝑥𝑒.

We first show how, during a fixed phase 𝑡, we incorporate the instance of Lemma 6.4.4
in our global instance, and howwe are able to analyze the value gained by a threshold
respecting algorithm on that phase.

Lemma 6.4.5. Letℳ = (𝑉,𝐸) be a (graph) matching, where every node 𝑣 ∈ 𝑉 has
a pre-existing load ℓ𝑣 ∈ [0, 1]. For every 𝛿 ∈ (0, 1], there exists an online tripartite
hypergraph instanceℋ satisfying Γ(ℋ) =ℳ, OPT(ℋ) = |ℳ| such that

val(𝒜,ℋ) ≤ (1 + 𝛿)|ℳ| −
∑︁
𝑣∈𝑉

𝑓 (ℓ𝑣) + 𝐶𝛿−2

against any threshold respecting algorithm𝒜, where 𝐶 is a constant satisfying 𝐶 ≤ 10.

Remark 6.4.6. Since 𝐸 is a matching, one can also rewrite this bound as

val(𝒜,ℋ) ≤
∑︁

(𝑢,𝑣)∈𝐸

(︁
1− 𝑓(ℓ𝑢)− 𝑓(ℓ𝑣)

)︁
+ 𝛿|ℳ|+ 𝐶𝛿−2.

Let us give intuition behind this lemma. At the beginning of phase 𝑡, the matching
ℳ(𝑡) will have pre-existing loads ℓ(𝑡−1)

𝑣 , obtained after the 𝑡− 1 previous phases.
This lemma allows to relate the value on this phase, parametrized by the pre-existing
loads, and will then be used in an inductive argument. At the beginning of the first
phase, all the loads satisfy ℓ𝑣 = 0. Plugging this into the above with |ℳ| = 𝑛 and
𝛿 = 𝑛−1/3 gives a competitive ratio of

𝑛− 2 𝑛 𝑓(0) + (𝐶 + 1)𝑛2/3

𝑛

𝑛→∞−−−→ 1− 2𝑓(0) =
𝑒− 1

𝑒+ 1

which is what we are aiming for.

Proof. Let us fix 𝑁 := ⌈2/𝛿⌉. We partition the edges of the matchingℳ into 𝑁2

submatchings, by setting

ℳ(𝑖, 𝑗) :=

{︂
(𝑢, 𝑣) ∈ℳ : ℓ𝑢 ∈

[︂
𝑖− 1

𝑁
,
𝑖

𝑁

]︂
, ℓ𝑣 ∈

[︂
𝑗 − 1

𝑁
,
𝑗

𝑁

]︂}︂
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for every 𝑖, 𝑗 ∈ {1, . . . , 𝑁}. The main idea now is to apply Lemma 6.4.4 separately
to every submatchingℳ(𝑖, 𝑗). Since we are considering a threshold respecting
algorithm, we can compute an upper bound on the amount that the algorithm can
put on an edge 𝑒 ∈ℳ(𝑖, 𝑗) while staying below the threshold:

Δ(𝑖, 𝑗) := max
{︂
𝑥 : 𝑓

(︂
𝑖− 1

𝑁
+ 𝑥

)︂
+ 𝑓

(︂
𝑗 − 1

𝑁
+ 𝑥

)︂
≤ 1

}︂

= ln

⎛⎝ 𝑒+ 1

exp
(︀
𝑖−1
𝑁

)︀
+ exp

(︁
𝑗−1
𝑁

)︁
⎞⎠ .

A simpler way to write this equality is as follows:

exp(−Δ(𝑖, 𝑗)) = 𝑓

(︂
𝑖− 1

𝑁

)︂
+ 𝑓

(︂
𝑗 − 1

𝑁

)︂
.

By Lemma 6.4.4, we know that there exists sets of online nodes 𝑊 (𝑖, 𝑗) which,
together with the matchingsℳ(𝑖, 𝑗), form online hypergraphsℋ(𝑖, 𝑗) such that

val
(︁
𝒜,ℋ(𝑖, 𝑗)

)︁
≤
(︁
1− exp(−Δ(𝑖, 𝑗)

)︁ ⃒⃒⃒
ℳ(𝑖, 𝑗)

⃒⃒⃒
+

3

2
∀𝑖, 𝑗 ∈ {1, . . . , 𝑁}.

Now, observe that for an edge (𝑢, 𝑣) ∈ℳ(𝑖, 𝑗) with levels ℓ𝑢 and ℓ𝑣 , we have that

𝑓

(︂
𝑖− 1

𝑁

)︂
≥ 𝑓

(︂
ℓ𝑢 −

1

𝑁

)︂
≥ 𝑓(ℓ𝑢)−

1

𝑁
and 𝑓

(︂
𝑗 − 1

𝑁

)︂
≥ 𝑓 (ℓ𝑣)−

1

𝑁
.

The first inequality follows from the fact that 𝑓 is a non-decreasing function. The
second inequality follows from the fact that 𝑓 ′(𝑥) = 𝑓(𝑥) ≤ 1 for every 𝑥 ∈ [0, 1].
Hence, the total value gained by the algorithm can be upper bounded as follows:

val
(︁
𝒜,ℋ

)︁
=

𝑁∑︁
𝑖,𝑗=1

val
(︁
𝒜,ℋ(𝑖, 𝑗)

)︁

≤
𝑁∑︁

𝑖,𝑗=1

(︂
1− 𝑓

(︂
𝑖− 1

𝑁

)︂
− 𝑓

(︂
𝑗 − 1

𝑁

)︂)︂ ⃒⃒⃒
ℳ(𝑖, 𝑗)

⃒⃒⃒
+

3

2
𝑁2

≤ 3

2
𝑁2 +

𝑁∑︁
𝑖,𝑗=1

∑︁
(𝑢,𝑣)∈ℳ(𝑖,𝑗)

(︂
1− 𝑓(ℓ𝑢)− 𝑓(ℓ𝑣) +

2

𝑁

)︂

=
3

2
𝑁2 +

∑︁
(𝑢,𝑣)∈ℳ

(︂
1− 𝑓(ℓ𝑢)− 𝑓(ℓ𝑣) +

2

𝑁

)︂

=

(︂
1 +

2

𝑁

)︂
|ℳ| −

∑︁
𝑣∈𝑉

𝑓(ℓ𝑣) +
3

2
𝑁2 ≤ (1 + 𝛿)|ℳ| −

∑︁
𝑣∈𝑉

𝑓 (ℓ𝑣) + 9𝛿−2.
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For the last inequality, since 𝑁 = ⌈2/𝛿⌉, we have used the bounds 2/𝑁 ≤ 𝛿 and
𝑁2 ≤ (2/𝛿 + 1)2 = (4 + 4𝛿 + 𝛿2)/𝛿2 ≤ 9/𝛿2.

We now upper bound the value gained by a threshold respecting algorithm for
every phase 𝑡 ∈ {1, . . . , 𝑇 − 1}. The following lemma uses two properties from
the construction of the matchingsℳ(𝑡) that we state now. The exact construction
ofℳ(𝑡) is described and illustrated in detail in the next section, since it is mostly
needed to bound the value obtained by the algorithm in the last phase. Let us fix a
component 𝐶𝑖 for 𝑖 ∈ {1, . . . ,𝑚}.

1. At the end of phase 𝑡−1, let ℰ𝑖 ⊆ℳ(𝑡−1)
𝑖 be the subset of edges which exceed

the threshold, i.e., ℰ𝑖 := {(𝑢, 𝑣) ∈ ℳ(𝑡−1)
𝑖 : 𝑓(ℓ

(𝑡−1)
𝑢 ) + 𝑓(ℓ

(𝑡−1)
𝑣 ) ≥ 1}. The

vertex set ofℳ(𝑡)
𝑖 consists of the nodes incident to ℰ𝑖, in addition to two fresh

nodes, one each from 𝑈𝑖 and 𝑉𝑖. By fresh, we mean that they have never
appeared in previous matchingsℳ(1)

𝑖 , . . . ,ℳ(𝑡−1)
𝑖 .

2. For every phase 𝑡, the size of the matching satisfies 1 ≤ |ℳ(𝑡)
𝑖 | ≤ 𝑡 and thus

𝑚 ≤ |ℳ(𝑡)| ≤ 𝑡𝑚.

Lemma 6.4.7. For every phase 𝑡 ∈ {1, . . . , 𝑇 − 1}, the value obtained by a threshold
respecting algorithm is at most

val(𝑡)(𝒜) ≤ 𝑒− 1

𝑒+ 1
𝑚+ 𝐶 𝑡2/3 𝑚2/3

where 𝐶 is an absolute constant satisfying 𝐶 ≤ 10.

Proof. We bound the value of val(𝑡)(𝒜) using Lemma 6.4.5, applied with 𝛿 =
|ℳ(𝑡)|−1/3, which can be written as

val(𝑡)(𝒜) ≤
∑︁

(𝑢,𝑣)∈ℳ(𝑡)

(︁
1− 𝑓(ℓ(𝑡−1)

𝑢 )− 𝑓(ℓ(𝑡−1)
𝑣 )

)︁
+ 𝐶|ℳ(𝑡)|2/3

=

𝑚∑︁
𝑖=1

∑︁
(𝑢,𝑣)∈ℳ(𝑡)

𝑖

(︁
1− 𝑓(ℓ(𝑡−1)

𝑢 )− 𝑓(ℓ(𝑡−1)
𝑣 )

)︁
+ 𝐶|ℳ(𝑡)|2/3 (6.12)

by splitting the matching into its𝑚 components. Fix a component 𝑖 ∈ {1, . . . ,𝑚},
and let ℰ𝑖 :=

{︁
𝑒 ∈ ℳ(𝑡−1)

𝑖 | 𝑓(ℓ(𝑡−1)
𝑢 ) + 𝑓(ℓ

(𝑡−1)
𝑣 ) ≥ 1

}︁
be the subset of edges

in the matchingℳ(𝑡−1)
𝑖 which exceed the threshold at the end of phase 𝑡− 1. By
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Property 1 described above, the nodes of the matchingℳ(𝑡)
𝑖 consist of the nodes

incident to ℰ𝑖, in addition to two new fresh nodes whose fractional degree is 0. This
allows to expand the inner sum in (6.12) as:∑︁
(𝑢,𝑣)∈ℳ(𝑡)

𝑖

(︁
1− 𝑓(ℓ(𝑡−1)

𝑢 )− 𝑓(ℓ(𝑡−1)
𝑣 )

)︁
= 1− 2𝑓(0) +

∑︁
(𝑢,𝑣)∈ℰ𝑖

(︁
1− 𝑓(ℓ(𝑡−1)

𝑢 )− 𝑓(ℓ(𝑡−1)
𝑣 )

)︁
≤ 1− 2𝑓(0) =

𝑒− 1

𝑒+ 1
.

Plugging this into (6.12) with the bound |ℳ(𝑡)| ≤ 𝑡𝑚 described in Property 2 yields
the desired result.

Corollary 6.4.8. The total value obtained by an 𝜀-threshold respecting algorithm on
the first 𝑇 − 1 phases is at most:

𝑇−1∑︁
𝑡=1

(︂
𝑒− 1

𝑒+ 1
𝑚+ 𝐶 𝑡2/3𝑚2/3 + 𝜀𝑡𝑚

)︂
≤ 𝑇𝑚

(︂
𝑒− 1

𝑒+ 1
+ 𝜀𝑇 + 𝐶 𝑇 2/3𝑚−1/3

)︂
Proof. The proof follows from Lemma 6.4.7 and the fact that the value above the
threshold is upper bounded by 𝜀|ℳ(𝑡)| ≤ 𝜀𝑡𝑚 for every phase 𝑡 ∈ {1, . . . , 𝑇 − 1}.
The latter is due to 𝑓 being 1-Lipschitz on [0, 1], |ℳ(𝑡)| ≤ 𝑡𝑚 by Property 2, and our
assumption that the algorithm is 𝜀-threshold respecting.

Bound for the last phase

It is left to describe the construction of the matchingsℳ(1)
𝑖 , . . . ,ℳ(𝑇 )

𝑖 for every
𝑖 ∈ [𝑚]. Since for all 𝑖 ̸= 𝑗 and for all 𝑡, 𝑡′ ∈ [𝑇 ], the matchingsℳ(𝑡)

𝑖 andℳ(𝑡′)
𝑗

will be disjoint, it suffices to define the construction of the matchings for a single
component𝐶𝑖. This construction will then allow us to prove that the value gained by
the algorithm during the last phase 𝑇 of our instance is at most 𝑂(

√
𝑇 ) + 𝜀 𝑂(𝑇 2)

on every component 𝐶𝑖 for 𝑖 ∈ {1, . . . ,𝑚}.
The matchingsℳ(1)

𝑖 , . . . ,ℳ(𝑇 )
𝑖 of a fixed component𝐶𝑖 can be seen as evolving

over the phases. We now describe this construction, which is adaptive to the behavior
of the algorithm. It is essentially the instance of [Gam+19] with our threshold
function incorporated. The vertex set of these matchings is on a bipartite graph,
with 𝑇 nodes on both sides of the bipartition. Let us denote this bipartition as
𝑈𝑖 = {1, . . . , 𝑇} and 𝑉𝑖 = {1, . . . , 𝑇}. We index them the same way due to the
symmetry assumption on the algorithm in Section 6.4.
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M(1)
i M(2)

i M(3)
i M(4)

i M(5)
i

Figure 6.3: The partial matchingsℳ(𝑡)
𝑖 if the fractional algorithm ensures that

every edge reaches the threshold at the end of every phase, meaning that 𝑓(ℓ(𝑡)𝑢 ) +

𝑓(ℓ
(𝑡)
𝑣 ) ≥ 1 for every (𝑢, 𝑣) ∈ℳ(𝑡)

𝑖 .The optimal solution at the end of phase 5 has
size five and consists ofℳ(5)

𝑖 .

The matchings of a fixed component 𝐶𝑖 can be seen as evolving over time (or
over the phases), corresponding to the (partial) matchingsℳ(1)

𝑖 , . . . ,ℳ(𝑇 )
𝑖 . We

now describe this construction, which is adaptive to the behavior of the algorithm,
and which is essentially the instance of [Gam+19] with our threshold function
incorporated. The vertex set of these partial matchings is on a bipartite graph,
with 𝑇 nodes on both sides of the bipartition. Let us denote this bipartition as
𝑈𝑖 = {1, . . . , 𝑇} and 𝑉𝑖 = {1, . . . , 𝑇}. We index them the same way because of the
symmetry assumption on the algorithm in Section 6.4.

• ℳ(1)
𝑖 is a matching of size one consists of the single edge (1, 1).

• If the algorithm does not increase 𝑒 = (1, 1) up to the threshold, i.e. 𝜙(𝑒) =
2 𝑓(ℓ

(1)
1 ) < 1, then both nodes 1 are called inactive andℳ(2)

𝑖 also consists of
a single edge (2, 2). If 𝜙(𝑒) ≥ 1, thenℳ(2)

𝑖 = {(1, 2), (2, 1)}.

• More generally, at the end of phase 𝑡, the active nodes will be the ones incident
to edges 𝑒 = (𝑢, 𝑣) ∈ ℳ(𝑡)

𝑖 satisfying 𝜙(𝑒) = 𝑓(ℓ
(𝑡)
𝑢 ) + 𝑓(ℓ

(𝑡)
𝑣 ) ≥ 1. The

nodes appearing in any of the other edges are called inactive. Inactive nodes
will not appear in any of the matchings of later phases.

• Let 𝜎𝑡(1) < 𝜎𝑡(2) < . . . < 𝜎𝑡(𝑟𝑡) be the active nodes at the end of phase 𝑡,
where 𝑟𝑡 denotes the number of such active nodes. This means that the edges
exceeding the threshold at the end of phase 𝑡 are:{︁(︁

𝜎𝑡(𝑘), 𝜎𝑡(𝑟𝑡 + 1− 𝑘)
)︁
, 𝑘 ∈ {1, . . . , 𝑟𝑡}

}︁
⊆ℳ(𝑡)

𝑖 .
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Figure 6.4: In this example, the algorithm does not increase the edge (1, 3), and thus
by symmetry the edge (3, 1), up to the threshold during phase 𝑡 = 3. This means
that 𝑓(ℓ(3)1 ) + 𝑓(ℓ

(3)
3 ) < 1 and that the nodes 1 and 3 become inactive from that

point on. The optimal solution at the end of phase 5 still has size five and consists of
ℳ(5)

𝑖 , in addition to the two edges (1, 3) and (3, 1) that are below the threshold.

They satisfy 𝑓(ℓ(𝑡)𝑢 ) + 𝑓(ℓ
(𝑡)
𝑣 ) ≥ 1 for every (𝑢, 𝑣) = (𝜎𝑡(𝑘), 𝜎𝑡(𝑟𝑡 + 1− 𝑘)).

The matching at phase 𝑡+ 1 is then of size 𝑟𝑡 + 1 and is defined as:

ℳ(𝑡+1)
𝑖 :=

{︁(︁
𝜎𝑡(𝑘), 𝜎𝑡(𝑟𝑡 + 2− 𝑘)

)︁
, 𝑘 ∈ {1, . . . , 𝑟𝑡 + 1}

}︁
,

where we define 𝜎𝑡(𝑟𝑡 + 1) := 𝑡+ 1 for convenience. In particular, note that
𝑡 + 1 ∈ 𝑈𝑖 and 𝑡 + 1 ∈ 𝑉𝑖 are two fresh nodes, which are always part of
the matchingℳ(𝑡+1)

𝑖 , but not part of any matching from a previous phase.
Figures 6.3 and 6.4 illustrate the construction.

• The size of every matching satisfies 1 ≤
⃒⃒⃒
ℳ(𝑡)

𝑖

⃒⃒⃒
≤ 𝑡 and thus also 𝑚 ≤⃒⃒

ℳ(𝑡)
⃒⃒
≤ 𝑡𝑚 if we consider the matchingℳ(𝑡) =

⋃︀𝑚
𝑖=1ℳ

(𝑡)
𝑖 on all the

components.

Observe that the nodes 𝜎𝑡(𝑘) ∈ 𝑈𝑖 and 𝜎𝑡(𝑘) ∈ 𝑉𝑖 for every 𝑘 ∈ {1, . . . , ⌈(𝑟𝑡 +
1)/2⌉} form a vertex cover of the matchingℳ(𝑡+1)

𝑖 , meaning that every edge of the
matching at phase 𝑡+1 is covered by one of these active nodes at phase 𝑡. Intuitively,
this construction ensures, as 𝑡 gets large, that these nodes have a high fractional
degree, meaning that the algorithm does not have a lot of room to increase the
fractional value on any edge ofℳ(𝑡+1)

𝑖 , due to the degree constraints. In order to
upper bound the value that the algorithm can get in phase 𝑡+ 1, we will thus lower
bound the fractional degree of the active nodes 𝜎𝑡(𝑖) for 𝑖 ∈ {1, . . . , ⌈(𝑟𝑡 + 1)/2⌉}.
For this reason, we define:

ℓ(𝑡, 𝑖) := 𝑥(𝑡)
(︁
𝛿(𝜎𝑡(𝑖))

)︁
=

∑︁
𝑒∈𝛿(𝜎𝑡(𝑖))

𝑥(𝑡)𝑒 .
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(a) 𝑡 = 11,𝑚𝑡 = 6
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(b) 𝑡 = 101,𝑚𝑡 = 51

Figure 6.5: Plot of the ℓ(𝑡, 𝑖) process for two different values of 𝑡 if the algo-
rithm exactly matches the threshold at every phase. Observe that, since 𝑡 is
odd, (𝜎𝑡(𝑚𝑡), 𝜎𝑡(𝑚𝑡)) ∈ ℳ(𝑡)

𝑖 with the load of node 𝜎𝑡(𝑚𝑡) staying at ln((𝑒 +
1)/2) ≈ 0.62.

In words, this is the fractional degree of the 𝑖th active node at the end of phase 𝑡.
One can now see {ℓ(𝑡, 𝑖)}𝑡,𝑖 as a process with two parameters, which depends on the
behavior of the algorithm. For intuition, Figure 6.5 provides an example of ℓ(𝑡, 𝑖) if
the algorithm exactly reaches the threshold for every edge, i.e. 𝑓(ℓ(𝑡)𝑢 ) + 𝑓(ℓ

(𝑡)
𝑣 ) = 1

for every (𝑢, 𝑣) ∈ℳ(𝑡)
𝑖 .

Let us define𝑚𝑡 := (𝑟𝑡 + 1)/2. Our final goal of this section is to show that

⌈𝑚𝑇−1⌉∑︁
𝑖=1

2(1− ℓ(𝑇 − 1, 𝑖)) = 𝑂(
√
𝑇 ) + 𝜀 𝑂(𝑇 2),

where 𝑇 is the total number of phases of our instance. The factor 2 is not necessary,
but we write it to make clear that we are lower bounding the loads of the active
nodes at the end of phase 𝑇 − 1 with active index at most ⌈𝑚𝑇−1⌉ on both sides
of the bipartition, since these nodes form a vertex cover of the matchingℳ(𝑇 )

𝑖 .
Clearly, this claim would also imply that the algorithm can get a value of at most
𝑂(
√
𝑇 ) + 𝜀 𝑂(𝑇 2) in component 𝐶𝑖 during the last phase by the degree constraints.

In order to be able to get a lower bound on ℓ(𝑡, 𝑖), we now relate it to a process
which is simpler to analyze, defined as follows on N× Z/2:

𝜁(𝑡, 𝑦) = Pr
𝑋∼𝐵(𝑡, 1

2
)

[︂
𝑋 <

𝑡

2
+ 𝑦

]︂
+

1

2
Pr

𝑋∼𝐵(𝑡, 1
2
)

[︂
𝑋 =

𝑡

2
+ 𝑦

]︂
,

where𝐵(𝑡, 12) is the binomial distribution with parameters 𝑡 and 1
2 (see Figure 6.6 for

an illustration). An important consequence of this function is the following upper
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Figure 6.6: Plot of 𝜁(𝑡, 𝑦) for two different values of 𝑡, the horizontal axis represents
𝑦 ∈ Z/2.

bound:
∞∑︁
𝑦=0

(︁
1− 𝜁

(︁
𝑡,
𝑦

2

)︁)︁
≤ 1 +

1

2

√
𝑡 ∀𝑡 ≥ 1. (6.13)

We will then relate the process ℓ(𝑡, 𝑖) to a linear transformation of the process 𝜁(𝑡, 𝑖),
by defining:

𝜉(𝑡, 𝑖) := 𝑎 𝜁 (𝑡,𝑚𝑡 − 𝑖) + 𝑏− 𝜀𝑡,

where 𝑎 := 2 − 2 ln
(︁
(𝑒 + 1)/2)

)︁
≈ 0.76 and 𝑏 := 2 ln

(︁
(𝑒 + 1)/2)

)︁
− 1 ≈ 0.24.

Here, 𝑎 and 𝑏 are chosen such that whenever the algorithm exactly hits the threshold
for every edge, we have 𝜉(𝑡, 𝑡/2) = ln((𝑒 + 1)/2) = ℓ(𝑡, 𝑡/2) for all even 𝑡 and
lim𝑡→∞ 𝜉(𝑡, 𝑥) = 1 = lim𝑡→∞ ℓ(𝑡, 𝑥) for all 𝑥. As a reminder, the 𝜀 parameter
comes from the fact that we assume the algorithm to be 𝜀-threshold respecting.

Claim 6.4.9. The function 𝜁 satisfies:

1. For all 𝑡, 𝜁(𝑡, 𝑡+1
2 ) = 1.

2. For all 𝑡, 𝜁(𝑡, 𝑦) is nondecreasing in 𝑦.

3. For all 𝑡, we have: 𝜁(𝑡, 0) = 1
2 .

4. For all 𝑡 and 𝑦, we have: 𝜁(𝑡+ 1, 𝑦) = 1
2𝜁(𝑡, 𝑦 −

1
2) +

1
2𝜁(𝑡, 𝑦 +

1
2).

5. For all 𝑡, we have
∑︀∞

𝑦=0(1− 𝜁(𝑡,
1
2𝑦)) ≤ 1 + 1

2

√
𝑡.

Proof. The first two statements follow directly from the definition. The third
statement follows from the symmetry of 𝐵(𝑡, 12) around

𝑡
2 .
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For the fourth statement, let 𝑋 ∼ 𝐵(𝑡, 12) and 𝑌 ∼ 𝐵(1, 12) be independent.
Then, we have:

𝜁(𝑡+ 1, 𝑦) = Pr
[︂
𝑋 + 𝑌 <

𝑡+ 1

2
+ 𝑦

]︂
+

1

2
Pr
[︂
𝑋 + 𝑌 =

𝑡+ 1

2
+ 𝑦

]︂
= Pr[𝑌 = 1] Pr

[︂
𝑋 <

𝑡

2
+ 𝑦 − 1

2

]︂
+ Pr[𝑌 = 0] Pr

[︂
𝑋 <

𝑡

2
+ 𝑦 +

1

2

]︂
+

1

2
Pr[𝑌 = 0] Pr

[︂
𝑋 =

𝑡

2
+ 𝑦 +

1

2

]︂
+

1

2
Pr[𝑌 = 1] Pr

[︂
𝑋 =

𝑡

2
+ 𝑦 − 1

2

]︂
=

1

2
𝜁

(︂
𝑡, 𝑦 − 1

2

)︂
+

1

2
𝜁

(︂
𝑡, 𝑦 +

1

2

)︂
.

Now, let us prove the last statement. Let𝑋 ∼ 𝐵(𝑡, 12) and observe that 1− 𝜁(𝑡, 𝑦) ≤
Pr[𝑋 ≥ 𝑡

2 + 𝑦], leading to:

∞∑︁
𝑦=0

(1− 𝜁(𝑡, 1
2
𝑦)) ≤

∞∑︁
𝑦=0

Pr
[︂
𝑋 − 𝑡

2
≥ 𝑦

2

]︂
≤

∞∑︁
𝑦=0

Pr
[︂⃒⃒⃒⃒
𝑋 − 𝑡

2

⃒⃒⃒⃒
≥ 𝑦

2

]︂
≤ 1 + 2E[|𝑋 − 𝑡

2
|]

≤ 1 + 2

⎯⎸⎸⎷E

[︃(︂
𝑋 − 𝑡

2

)︂2
]︃

(by Jensen’s inequality)

= 1 + 2
√︀

Var [𝑋] = 1 +
1

2

√
𝑡.

We need one additional lemma before being able to get a lower bound for the
levels of the nodes. Let us define 𝑑𝑡(𝑢) = |𝑖 − 𝑚𝑡| for 𝑖 when 𝜎𝑡(𝑖) = 𝑢. For
intuition, let us illustrate this definition for the node 𝑢 = 2 in Fig. 6.3 and Fig. 6.4.
In the first figure, 𝑚1 = 1,𝑚2 = 1.5,𝑚3 = 2,𝑚4 = 2.5,𝑚5 = 3, whereas
𝑚1 = 1,𝑚2 = 1.5,𝑚3 = 1,𝑚4 = 1.5,𝑚5 = 2 in the second one. In both figures,
we have that 𝑑2(2) = 0.5, 𝑑3(2) = 0, 𝑑4(2) = 0.5, 𝑑5(2) = 1. The following lemma
states how this distance evolves over time. Both bounds stated are tight when every
edge reaches the threshold, see Fig. 6.3.

Lemma 6.4.10. Let 𝑢 = 𝜎𝑡(𝑖) for 𝑖 ≤ 𝑟𝑡. If 𝑖 < 𝑚𝑡, then:

𝑑𝑡(𝑢) ≤ 𝑑𝑡−1(𝑢) +
1

2
.
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If 𝑖 > 𝑚𝑡, then:

𝑑𝑡(𝑢) ≤ 𝑑𝑡−1(𝑢)−
1

2
.

Proof. Consider the case that 𝑖 < 𝑚𝑡. Let 𝑆 be the set of indices 𝑖 ≤ 𝑟𝑡−1 + 1
such that 𝜎𝑡−1(𝑖) is not active after phase 𝑡. Let 𝑗 be such that 𝜎𝑡−1(𝑗) = 𝑢. Let
𝑐 = |𝑠 ∈ 𝑆 : 𝑖 < 𝑠 < 𝑟𝑡−1 + 2− 𝑖|, which denotes the number of nodes from phase
𝑡− 1 that are not active in phase 𝑡 and that are between 𝑢 and its neighbor in phase
𝑡. We have 𝑑𝑡(𝑢) = 𝑚𝑡 − 𝑖 = 𝑚𝑡−1 +

1
2 −

1
2𝑐− 𝑖 ≤ 𝑚𝑡−1 +

1
2 − 𝑖 = 𝑑𝑡−1(𝑢) +

1
2 .

The proof for 𝑖 > 𝑚𝑡 is similar.

We are now ready to prove the desired lower bound.

Lemma 6.4.11. For every 𝑡 ∈ {1, . . . , 𝑇 − 1} and 𝑖 ∈ {1, . . . , ⌈𝑚𝑡⌉}, we have

ℓ(𝑡, 𝑖) ≥ 𝜉(𝑡, 𝑖),

where𝑚𝑡 = (𝑟𝑡+1)/2 and 𝑟𝑡 is the number of active nodes at the end of phase 𝑡, when
𝑟𝑡 ≥ 1.

Proof. We will prove this statement by induction on 𝑡. For the base case, consider
𝑡 = 1. There are two possibilities, either the edge (1, 1) does not make it to the
threshold, i.e. 2𝑓(ℓ(1)1 ) < 1, in which case 𝑟𝑡 = 0 and the statement is then trivially
satisfied. If the edge (1, 1)makes it to the threshold, then 2𝑓(ℓ(1)1 ) = 2𝑓(ℓ(1, 1)) ≥ 1,
which is equivalent to ℓ(1, 1) ≥ ln((𝑒+ 1)/2) by definition of 𝑓(𝑥) = 𝑒𝑥/(𝑒+ 1).
Observe that in this case 𝑟𝑡 = 𝑚𝑡 = 1, leading to

ℓ(1, 1) ≥ ln((𝑒+ 1)/2) =
𝑎

2
+ 𝑏 = 𝑎 𝜁(1, 0) + 𝑏 = 𝜉(1, 1) + 𝜀𝑡 ≥ 𝜉(1, 1),

where we have used the fact that 𝜁(1, 0) = 1/2.
Suppose now by induction that the statement holds for 𝑡 − 1, let 𝑟𝑡 be the

active nodes at the end of phase 𝑡, let𝑚𝑡 := (𝑟𝑡 + 1)/2 and consider an arbitrary
𝑖 ∈ {1, . . . , ⌈𝑚𝑡⌉}. Let us first consider the case where 𝑖 = 𝑚𝑡 = (𝑟𝑡 + 1)/2,
which can only occur when 𝑟𝑡 is odd. Observe that this means the edge (𝜎𝑡(𝑖), 𝜎𝑡(𝑖))
belongs to the matchingℳ(𝑡)

𝑖 and exceeds the threshold, i.e. ℓ(𝑡, 𝑖) ≥ ln((𝑒+1)/2).
Using the fact that 𝜁(𝑡, 0) = 1/2 for all 𝑡, 𝑖 = 𝑚𝑡 and the exact same arguments as
above, we get

ℓ(𝑡, 𝑖) ≥ ln((𝑒+ 1)/2) =
𝑎

2
+ 𝑏 = 𝑎 𝜁(𝑡, 0) + 𝑏 = 𝑎 𝜁(𝑡,𝑚𝑡 − 𝑖) + 𝑏

= 𝜉(𝑡, 𝑖) + 𝜀𝑡 ≥ 𝜉(𝑡, 𝑖).
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Consider now the case where 𝑖 < 𝑚𝑡. Let 𝑒 = (𝑢, 𝑣) = (𝜎𝑡(𝑖), 𝜎𝑡(𝑟𝑡+1−𝑖)) ∈ℳ(𝑡)
𝑖

and observe that 𝑒 exceeds the threshold, i.e. 𝑓(ℓ(𝑡)𝑢 )+𝑓(ℓ
(𝑡)
𝑣 ) = 𝑓(ℓ(𝑡, 𝑖))+𝑓(ℓ(𝑡, 𝑟𝑡+

1−𝑖)) ≥ 1. Let us pick indices 𝑗, 𝑘 such that 𝑢 = 𝜎𝑡−1(𝑗) and 𝑣 = 𝜎𝑡−1(𝑟𝑡−1+1−𝑘).
Observe that:

ℓ(𝑡, 𝑖) = ℓ(𝑡− 1, 𝑗) + 𝑥(𝑡)𝑒 and ℓ(𝑡, 𝑟𝑡 + 1− 𝑖) = ℓ(𝑡− 1, 𝑟𝑡−1 + 1− 𝑘) + 𝑥(𝑡)𝑒 .

If 𝑘 = 0, then 𝑣 has not appeared in any of the prior matchings, so ℓ(𝑡−1)
𝑣 = 0. In

particular, we have 𝑓(ℓ(𝑡−1)
𝑣 ) = 𝑓(0) = 1− 𝑓(1) ≤ 1 + 𝜀− 𝑓(𝜉(𝑡− 1, 𝑘)), because

𝜉(𝑡− 1, 𝑘) ≤ 1.
Otherwise, we have (𝜎𝑡−1(𝑘), 𝑣) ∈ ℳ(𝑡−1)

𝑖 and by using the fact that the
algorithm is 𝜀-threshold respecting, we get 𝑓(ℓ(𝑡− 1, 𝑘)) + 𝑓(ℓ

(𝑡−1)
𝑣 ) ≤ 1 + 𝜀.

By using the inductive hypothesis ℓ(𝑡− 1, 𝑘) ≥ 𝜉(𝑡− 1, 𝑘), we get

𝑓(ℓ(𝑡−1)
𝑣 ) ≤ 1 + 𝜀− 𝑓(𝜉(𝑡− 1, 𝑘)).

Since edge 𝑒 exceeds the threshold at the end of phase 𝑡, we have 𝑓(ℓ(𝑡−1)
𝑢 + 𝑥

(𝑡)
𝑒 ) +

𝑓(ℓ
(𝑡−1)
𝑣 + 𝑥

(𝑡)
𝑒 ) ≥ 1, which leads to

𝑥(𝑡)𝑒 ≥ − ln
(︁
𝑓(ℓ(𝑡−1)

𝑢 ) + 𝑓(ℓ(𝑡−1)
𝑣 )

)︁
≥ − ln

(︁
1 + 𝜀− 𝑓(𝜉(𝑡− 1, 𝑘)) + 𝑓(ℓ(𝑡−1)

𝑢 )
)︁

≥ 𝑓(𝜉(𝑡− 1, 𝑘))− 𝑓(ℓ(𝑡−1)
𝑢 )− 𝜀 = 𝑓(𝜉(𝑡− 1, 𝑘))− 𝑓(ℓ(𝑡− 1, 𝑗))− 𝜀,

where we have used the fact that 𝑓(𝑥) = 𝑒𝑥/(𝑒 + 1) is an increasing function
and ln(1 + 𝑥) ≤ 𝑥. Finally, since we have 𝑓 ′(ℓ(𝑡−1)

𝑢 ) = 𝑓(ℓ
(𝑡−1)
𝑢 ) ≥ 𝑓

(︁
ln((𝑒 +
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1)/2)
)︁
= 1/2:

ℓ(𝑡, 𝑖) = ℓ(𝑡−1)
𝑢 + 𝑥(𝑡)𝑒

≥ ℓ(𝑡−1)
𝑢 + 𝑓 ′(ℓ(𝑡−1)

𝑢 )
(︁
𝜉(𝑡− 1, 𝑘)− ℓ(𝑡− 1, 𝑗)

)︁
− 𝜀

(by convexity of 𝑓 and ℓ(𝑡−1)
𝑢 = ℓ(𝑡− 1, 𝑗))

=
1

2
ℓ(𝑡− 1, 𝑗) +

1

2
𝜉(𝑡− 1, 𝑘)− 𝜀 ≥ 1

2
𝜉(𝑡− 1, 𝑗) +

1

2
𝜉(𝑡− 1, 𝑘)− 𝜀

=
𝑎

2

(︁
𝜁
(︁
𝑡− 1, 𝑑𝑡−1(𝑢)

)︁
+ 𝜁
(︁
𝑡− 1, 𝑑𝑡−1(𝑣)

)︁)︁
+ 𝑏− 𝜀𝑡

≥ 𝑎

2

(︁
𝜁
(︁
𝑡− 1, 𝑑𝑡(𝑢) +

1

2

)︁
+ 𝜁
(︁
𝑡− 1, 𝑑𝑡(𝑣)−

1

2

)︁)︁
+ 𝑏− 𝜀𝑡 (by Lemma 6.4.10)

=
𝑎

2

(︁
𝜁
(︁
𝑡− 1, 𝑑𝑡(𝑢) +

1

2

)︁
+ 𝜁
(︁
𝑡− 1, 𝑑𝑡(𝑢)−

1

2

)︁)︁
+ 𝑏− 𝜀𝑡

= 𝑎 𝜁 (𝑡,𝑚𝑡 − 𝑖) + 𝑏− 𝜀𝑡
= 𝜉(𝑡, 𝑖)

where we have used the inductive hypothesis in the second inequality and the fourth
property of the 𝜁 function in the second to last inequality.

Theorem 6.4.12. The value that the algorithm gains on each component 𝐶𝑖 in the last
phase is at most:

𝑂(
√
𝑇 ) + 𝜀 𝑂(𝑇 2).

Proof. Consider the end of phase 𝑇 − 1. We can assume that 𝑟𝑇−1 ≥ 1, since
otherwise the statement is trivially satisfied. Observe that the nodes 𝜎𝑇−1(𝑘) ∈ 𝑈𝑖

and𝜎𝑇−1(𝑘) ∈ 𝑉𝑖 for 𝑘 ∈ {1, . . . , ⌈𝑚𝑇−1⌉} form a vertex cover of the finalmatching
ℳ(𝑇 )

𝑖 . Because of the degree constraints, this means that the value the algorithm
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can gain on the last phase 𝑇 is at most twice the following expression:

⌈𝑚𝑇−1⌉∑︁
𝑘=1

(︁
1− ℓ(𝑇 − 1, 𝑘)

)︁
≤

⌈𝑚𝑇−1⌉∑︁
𝑘=1

(︁
1− 𝜉(𝑇 − 1, 𝑘)

)︁

=

⌈𝑚𝑇−1⌉∑︁
𝑘=1

(︁
1− 𝑎 𝜁(𝑇 − 1,𝑚𝑇−1 − 𝑘)− 𝑏+ 𝜀(𝑇 − 1)

)︁

= 𝑎

⌈𝑚𝑇−1⌉∑︁
𝑘=1

(︁
1− 𝜁(𝑇 − 1,𝑚𝑇−1 − 𝑘)

)︁
+ 𝜀(𝑇 − 1)⌈𝑚𝑇−1⌉

≤ 𝜀 𝑇 2 + 𝑎

∞∑︁
𝑦=−1

(︁
1− 𝜁

(︁
𝑇 − 1,

𝑦

2

)︁)︁
≤ 𝜀 𝑇 2 + 𝑎

(︂
2 +

1

2

√
𝑇 − 1

)︂
= 𝑂(

√
𝑇 ) + 𝜀 𝑂(𝑇 2).

The first equality uses the relation 1 − 𝑏 = 𝑎, the second inequality is due to
𝑚𝑇−1 = (𝑟𝑇−1 + 1)/2 ≤ 𝑇/2 and the change of index 𝑦 := 2(𝑚𝑇−1 − 𝑘), while
the last inequality is by (6.13) and 𝜉(𝑡,−1) ≤ 1 for all 𝑡 ≥ 1.

Finishing up the proof

In this section, we complete the proof of Theorem 6.4.1.

Lemma 6.4.13. The optimal solution at the end of phase 𝑇 of our adversarial instance
ℋ = (𝑉,𝑊,𝐻) satisfies

OPT(ℋ) = 𝑇𝑚.

Proof. We show a stronger statement and prove that the optimal solution at the end
of phase 𝑡, that we denote by OPT(𝑡)(ℋ), has size 𝑡𝑚 for every phase 𝑡 ∈ {1, . . . , 𝑇}.
Let us focus first on the graph Γ(ℋ) = (𝑉,𝐸) and show that OPT(𝑡)(Γ(ℋ)) = 𝑡𝑚.
On each component 𝐶𝑖, we can construct a matching of size 𝑡 by takingℳ(𝑡)

𝑖 , along
with all the edges that did not make it to the threshold in previous phases, see Figure
6.4. In addition, only the nodes {1, . . . , 𝑡} are incident to edges on each component
at phase 𝑡, meaning that an upper bound of 𝑡 on the size of the optimal matching
holds. By applying this argument to every component 𝑖 ∈ {1, . . . ,𝑚}, we get that
OPT(𝑡)(Γ(ℋ)) = 𝑡𝑚.

Observe that we can complete this matching of size 𝑡𝑚 on Γ(ℋ) to a matching
of 3-hyperedges of size 𝑡𝑚 on ℋ by adding a distinct online node to every edge.
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This is possible since the online nodes are chosen through the construction of
Lemma 6.4.5, which itself uses the construction of Lemma 6.4.4 several times.
An illustration is provided in Figure 6.2. This construction thus ensures that
OPT(𝑡)(ℋ) = OPT(𝑡)(Γ(ℋ)) for all phases.

We now have all the ingredients to prove Theorem 6.4.1.

Proof of Theorem 6.4.1. By Corollary 6.4.8 and Theorem 6.4.12, the total value of the
algorithm on the instanceℋ can be upper bounded by

val(𝒜,ℋ) ≤ 𝑇𝑚
(︂
𝑒− 1

𝑒+ 1
+ 𝜀𝑇 +𝑂(𝑇 2/3𝑚−1/3)

)︂
+𝑚

(︁
𝑂(
√
𝑇 ) + 𝜀 𝑂(𝑇 2)

)︁
.

By Lemma 6.4.13, the competitive ratio is upper bounded by:

val(𝒜,ℋ)
OPT(ℋ)

≤ 𝑒− 1

𝑒+ 1
+ 𝜀 𝑂(𝑇 ) +𝑂(𝑇 2/3𝑚−1/3) +𝑂(𝑇−1/2).

Picking 𝑇 = 𝑜(
√
𝑚) and 𝜀 = 𝑜(1/𝑇 ), and taking the limit as 𝑇,𝑚 → ∞ finishes

the proof.

Justification of our assumptions

In this section, we justify the two assumptions made on the algorithm in Section 6.4.

Assumption 1: Symmetry

We start by justifying the symmetry assumption. For a vertex-arrival hypergraphℋ,
we denote 𝑉 (ℋ) as the set of offline nodes,𝑊 (ℋ) as the set of online nodes, and
𝐻(ℋ) as the set of hyperedges.

Definition 6.4.14. Given a vertex-arrival hypergraphℋ = (𝑉,𝑊,𝐻), an automor-
phism is a bijective map 𝜎 : 𝑉 → 𝑉 on the offline nodes such that for every 𝑆 ⊆ 𝑉
and 𝑤 ∈𝑊 ,

𝑆 ∪ {𝑤} ∈ 𝐻 ⇐⇒ {𝜎(𝑣) : 𝑣 ∈ 𝑆} ∪ {𝑤} ∈ 𝐻.

For 𝑆 ⊆ 𝑉 , we write 𝜎(𝑆) := {𝜎(𝑣) : 𝑣 ∈ 𝑆} for the sake of brevity. For a
hyperedge ℎ = 𝑆 ∪ {𝑤} where 𝑆 ⊆ 𝑉 and 𝑤 ∈ 𝑊 , we denote 𝜎(ℎ) := 𝜎(𝑆) ∪ 𝑤.
We also denote the relabelled hypergraph after applying 𝜎 toℋ as

𝜎(ℋ) := (𝜎(𝑉 ),𝑊, {𝜎(ℎ) : ℎ ∈ 𝐻}).
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Definition 6.4.15. Given a vertex-arrival hypergraph ℋ = (𝑉,𝑊,𝐻), let Σ be
a subset of its automorphisms. A fractional matching 𝑥 in ℋ is Σ-symmetric if
𝑥ℎ = 𝑥𝜎(ℎ) for all ℎ ∈ 𝐻 and 𝜎 ∈ Σ. An algorithm 𝒜 is Σ-symmetric on ℋ if it
outputs a Σ-symmetric fractional matching givenℋ.

Since the construction of our vertex-arrival instance depends on the behavior
of the algorithm, we will overload the notationℋ as follows. An (adaptive vertex-
arrival) instance is a functionℋ which takes as input an algorithm 𝒜 and outputs
a vertex-arrival hypergraphℋ(𝒜). For 𝑖 ≥ 1, letℋ𝑖(𝒜) be the subgraph ofℋ(𝒜)
right after the arrival of the 𝑖th online node 𝑤𝑖. We make the following assumptions
aboutℋ:

1. For any pair of algorithms 𝒜,𝒜′, we haveℋ1(𝒜) = ℋ1(𝒜′).

2. For any pair of algorithms 𝒜,𝒜′ and indices 𝑖, 𝑗 ≥ 1, we have 𝑉 (ℋ𝑖(𝒜)) =
𝑉 (ℋ𝑗(𝒜′)).

Definition 6.4.16. We say that 𝜎 is a strong automorphism of an instanceℋ if 𝜎 is
an automorphism ofℋ(𝒜) for every algorithm 𝒜.

Note that the set of strong automorphisms forms a group.
Given an instance ℋ, we now show that for any algorithm 𝒜, there exists

another algorithm𝒜′ which performs at least as well as𝒜 on the hypergraphℋ(𝐴′).
Furthermore, 𝒜′ is symmetric on ℋ(𝐴′) with respect to any subgroup of strong
automorphisms ofℋ.

Lemma 6.4.17. Let Σ be a subgroup of strong automorphisms of an instanceℋ. For
every algorithm 𝒜, there exists a Σ-symmetric algorithm 𝒜′ onℋ(𝒜′) such that

val(𝒜′,ℋ(𝒜′)) ≥ min
𝜎∈Σ

val(𝒜, 𝜎(ℋ(𝒜′))).

Proof. From 𝒜, we construct a new algorithm 𝒜′ as follows. When the 𝑖th online
node 𝑤𝑖 arrives for 𝑖 ≥ 1, run 𝒜 on 𝜎(ℋ𝑖(𝒜′)) for each 𝜎 ∈ Σ. Note that 𝜎 is an
automorphism of ℋ𝑖(𝒜′). Let 𝑦(𝜎, ℎ) be the value that 𝒜 puts on edge ℎ when it
ran on 𝜎(ℋ𝑖(𝒜′)). Then, 𝒜′ sets 𝑥ℎ = 1

|Σ|
∑︀

𝜎∈Σ 𝑦(𝜎, ℎ) for all ℎ ∈ 𝛿(𝑤𝑖). This
completes the description of 𝒜′.

First, we show that 𝑥 is a fractional matching inℋ(𝒜′). For any node 𝑣,∑︁
ℎ∈𝛿(𝑣)

𝑥ℎ =
1

|Σ|
∑︁
𝜎∈Σ

∑︁
ℎ∈𝛿(𝑣)

𝑦(𝜎, ℎ) ≤ 1.
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Next, we show that 𝑥 is Σ-symmetric. Fix an 𝑖 ≥ 1 and a strong automorphism
𝜏 ∈ Σ. Since Σ is a group, for every edge ℎ ∈ 𝛿(𝑤𝑖) we have

𝑥ℎ =

∑︀
𝜎∈Σ 𝑦(𝜎, ℎ)

|Σ|
=

∑︀
𝜎∈Σ 𝑦(𝜎, 𝜏(ℎ))

|Σ|
= 𝑥𝜏(ℎ)

as desired. Finally,

val(𝒜′,ℋ(𝒜′)) =
∑︁
ℎ

𝑥ℎ =
1

|Σ|
∑︁
𝜎∈Σ

∑︁
ℎ

𝑦(𝜎, ℎ) ≥ min
𝜎∈Σ

val(𝒜, 𝜎(ℋ(𝒜′))).

In Section 6.4, we stated that we assume that the algorithm treats the 𝑘th
vertex in 𝑈𝑖, say 𝑢𝑖,𝑘, and the 𝑘th vertex in 𝑉𝑖, say 𝑣𝑖,𝑘, symmetrically. If our
constructed hypergraphℋ would be symmetric with respect to these vertices, i.e. if
the permutation 𝜎 swapping these two vertices would be a strong automorphism of
ℋ, then Lemma 6.4.17 would show that this assumption can be made without loss of
generality.

However, one part of the global instance that breaks this symmetry is the
construction given in the proof of Lemma 6.4.4 and illustrated in Figure 6.2. As a
reminder, this construction is repeatedly applied to submatchings ofℳ(𝑡) during
some phase 𝑡 in Lemma 6.4.5. Let us fix one such submatching and denote it by
ℳ. As described in Section 6.4 and illustrated in Fig. 6.4, if some 𝑢𝑖,𝑘 ∈ ℳ, then
𝑣𝑖,𝑘 ∈ℳ and the submatching is symmetric with respect to this pair, i.e. 𝜎(𝑒) ∈ℳ
for every edge 𝑒 inℳ, where 𝜎 is the permutation swapping these two vertices.
However, due to the Lemma 6.4.4 construction, 𝑒 ∪ {𝑤} might be a hyperedge inℋ
for some online vertex 𝑤, while 𝜎(𝑒∪{𝑤}) = 𝜎(𝑒)∪{𝑤}might not be a hyperedge
inℋ.

To fix this, the construction can be slightly tweaked in the following way. An
important observation is that the horizontal edges inℳ (between 𝑢𝑖,𝑘 and 𝑣𝑖,𝑘) are
not isomorphic to any other edge in the hypergraph, whereas each of the diagonal
edges (all non-horizontal edges) are isomorphic to exactly one other edge inℳ. For
this reason, we can first apply the Lemma 6.4.4 construction on just the horizontal
edges ofℳ.

We can then can apply a slightly modified construction to the diagonal edges,
where the pairs of isomorphic edges are treated in the same way. In the original
construction, a newly arriving online vertex 𝑤 would be connected to all edges in
ℳ that were incident to the previous online vertex, except for the one with the
smallest fractional value. In the modified construction, we instead consider the
online vertices in groups of two. For every two consecutive online vertices, we
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connect them to all edges inℳ that were incident to the previous online vertex,
except for the diagonal pair with the smallest total fractional value. This ensures
that the symmetry between the diagonal edges is respected.

This modified construction would slightly worsen the upper bound that we gave
in Lemma 6.4.4 to become (1 − 𝑒−Δ)|ℳ| + 9/2. However, since it only changes
the constant, this does not affect the asymptotic upper bound for large𝑚. Hence, it
shows that Theorem 6.4.1 also holds for non-symmetric algorithms.

Assumption 2: 𝜀-Threshold Respectingness

Next, we justify the assumption of 𝜀-threshold respectingness. Letℋ be the instance
constructed in Section 6.4. Let 𝑓 be the function given by

𝑓(𝑥) :=
𝑒𝑥

𝑒+ 1
,

and recall the definition of 𝜀-threshold respecting with respect to 𝑓 (Definition 6.4.2).
For any algorithm 𝒜 and 𝜀 > 0, we now show that there exists an algorithm 𝒜′

which is 𝜀-threshold respecting on all online nodes before the last phase. Moreover,
there exists an instance ℋ′ such that the performance of 𝒜 on ℋ′ matches the
performance of 𝒜′ onℋ.

Lemma 6.4.18. Letℋ be the instance constructed in Section 6.4. For any algorithm 𝒜
and 𝜀 > 0, there exists an algorithm 𝒜′ which is 𝜀-threshold respecting on all online
nodes before the last phase. Furthermore, there exists an instanceℋ′ such that

val(𝒜,ℋ′(𝒜))
OPT(ℋ′(𝒜))

=
val(𝒜′,ℋ(𝒜′))

OPT(ℋ(𝒜′))
.

Proof. From ℋ, we construct a new instance ℋ′ as follows. Let 𝑁 = ⌈2/𝜀⌉. For
every offline node 𝑣 in ℋ, create 𝑁 offline copies in ℋ′, denoted 𝑣′1, 𝑣′2, . . . , 𝑣′𝑁 .
The new algorithm 𝒜′ will be defined based on the behavior of 𝒜 on ℋ′. When
the 𝑖th online node 𝑤𝑖 arrives in ℋ(𝒜′) for 𝑖 ≥ 1, at most 𝑁 copies of 𝑤𝑖 arrives
sequentially inℋ′(𝒜), denoted 𝑤′

𝑖,1, 𝑤
′
𝑖,2, . . . . When the 𝑗th copy 𝑤′

𝑖,𝑗 arrives, for
every edge ℎ = 𝑆 ∪𝑤𝑖 inℋ𝑖(𝒜′), add the edge ℎ′𝑗 := {𝑣′𝑗 : 𝑣 ∈ 𝑆} ∪𝑤′

𝑖,𝑗 toℋ′(𝒜).
Now, let 𝑥′𝑖,𝑗 denote the solution given by 𝒜 inℋ′ after the arrival of 𝑤′

𝑖,𝑗 . Consider
the following averaged solution

𝑥𝑖,𝑗(ℎ) :=
1

𝑁

∑︁
𝑘

𝑥′𝑖,𝑗(ℎ
′
𝑘) ∀ℎ ∈ 𝐻(ℋ𝑖(𝒜′)).

If 𝑗 = 𝑁 , or𝑤𝑖 appeared before the last phase and there exists a hyperedge ℎ ∈ 𝛿(𝑤𝑖)
such that ∑︁

𝑣∈ℎ∖{𝑤𝑖}

𝑓(𝑥𝑖,𝑗(𝛿(𝑣))) ≥ 1,
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then 𝑤′
𝑖,𝑗+1, . . . , 𝑤

′
𝑖,𝑁 will not arrive inℋ′. In this case, 𝒜′ sets 𝑥(ℎ)← 𝑥𝑖,𝑗(ℎ) for

all ℎ ∈ 𝛿(𝑤𝑖) inℋ. Otherwise, we proceed to let the (𝑗 + 1)th copy 𝑤′
𝑖,𝑗+1 arrive in

ℋ′. This completes the description of 𝒜′.
Clearly, 𝑥 is a fractional matching inℋ(𝒜′). Moreover,

val(𝒜′,ℋ(𝒜′)) =
∑︁
ℎ

𝑥(ℎ) =
val(𝒜,ℋ′(𝒜))

𝑁
.

Next, we claim that 𝑁 · OPT(ℋ(𝒜′)) = OPT(ℋ′(𝒜)). Based on the construction
ofℋ, the offline optimal matching inℋ(𝒜′) covers all the online nodes in the last
phase, and the online nodes on which 𝒜′ is strictly threshold respecting. Let𝑊OPT
denote the union of these two sets. For each 𝑤𝑖 ∈𝑊OPT, observe that 𝑤𝑖,𝑗 is present
in ℋ′(𝒜) for all 𝑗 ∈ [𝑁 ] by our construction of ℋ′. Hence, the offline optimal
matching inℋ′(𝒜) covers the following online nodes

{𝑤𝑖,𝑗 : 𝑤𝑖 ∈𝑊OPT, 𝑗 ∈ [𝑁 ]}.

So, 𝑁 · OPT(ℋ(𝒜′)) = OPT(ℋ′(𝒜)) as desired.
It is left to show that 𝒜′ is 𝜀-threshold respecting on all online nodes before the

last phase. Pick such an online node 𝑤𝑖 and let 𝑤𝑖,𝑗 be its last copy inℋ′(𝒜). Note
that 𝑥𝑖,𝑗 is the output of 𝒜′ inℋ𝑖(𝒜′). For any ℎ ∈ 𝛿(𝑤𝑖), we have

∑︁
𝑣∈ℎ∖{𝑤𝑖}

𝑓(𝑥𝑖,𝑗(𝛿(𝑣))) ≤
∑︁

𝑣∈ℎ∖{𝑤𝑖}

𝑓

(︂
𝑥𝑖,𝑗−1(𝛿(𝑣)) +

1

𝑁

)︂
(𝑥′𝑖,𝑗(𝛿(𝑤′

𝑖,𝑗)) ≤ 1)

≤
∑︁

𝑣∈ℎ∖{𝑤𝑖}

(︂
𝑓(𝑥𝑖,𝑗−1(𝛿(𝑣)) +

1

𝑁

)︂
(𝑓 is 1-Lipschitz)

< 1 +
2

𝑁
(due to |ℎ| = 3 and the construction ofℋ′)

≤ 1 + 𝜀.

6.5 Integral algorithm for bounded degree hypergraphs

In this section, we show that Random (Algorithm 4) performs better than the greedy
algorithm when the online nodes have bounded degree.

We prove Theorem 6.1.2, restated below.
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Algorithm 4 Random algorithm for bounded degree hypergraphs
Input : 𝑘-uniform hypergraphℋ = (𝑉,𝑊,𝐻) with online arrivals of each 𝑤 ∈
𝑊 with |𝛿(𝑤)| ≤ 𝑑.
Output : Matchingℳ⊆ 𝐻

setℳ← ∅
when 𝑤 ∈𝑊 arrives with 𝛿(𝑤) ⊆ 𝐻 :

pick uniformly at random ℎ ∈ 𝛿(𝑤) among the hyperedges that are disjoint
fromℳ

set 𝑦𝑣 = min
(︁

1
𝑘−1 ,

𝑑
(𝑑−1)𝑘+1

)︁
for all 𝑣 ∈ ℎ ∖ {𝑤}

set 𝑦𝑤 = max
(︁
0, 𝑑−𝑘+1

(𝑑−1)𝑘+1

)︁
returnℳ

Theorem 6.5.1. Algorithm 4 is 𝜌-competitive for 𝑘-uniform hypergraphs whose online
nodes have degree at most 𝑑, where

𝜌 = min
(︂

1

𝑘 − 1
,

𝑑

(𝑑− 1)𝑘 + 1

)︂
.

Proof. Let the algorithm be denoted by 𝒜. We prove the result via a primal-dual
analysis, where the random primal solution is given by 𝑥ℎ := 1{ℎ∈ℳ} for every
ℎ ∈ 𝐻 and the random dual solution is the vector 𝑦 ∈ [0, 1]𝑉 ∪𝑊 constructed during
the execution of the algorithm. Observe that the objective values of both solutions
are equal at all times during the execution of the algorithm:

val(𝒜) = |ℳ| =
∑︁
ℎ∈𝐻

𝑥ℎ =
∑︁

𝑣∈𝑉 ∪𝑊
𝑦𝑣. (6.14)

This holds since every time a hyperedge ℎ ∈ 𝐻 is matched by the algorithm,
increasing the primal value val(𝒜) by one, the dual objective increases by

∑︀
𝑣∈ℎ 𝑦𝑣 .

Two easy computations that we omit show that the latter is also equal to one in both
cases where 𝑑 ≤ 𝑘 − 1 and 𝑑 ≥ 𝑘 − 1.

We will now show that, in expectation, the dual constraints are satisfied up to a
factor of 𝜌, i.e.

E

[︃∑︁
𝑣∈ℎ

𝑦𝑣

]︃
≥ 𝜌 ∀ℎ ∈ 𝐻. (6.15)

This will imply the theorem, since the random vector E[𝑦]/𝜌 will then be a feasible
dual solution, leading to E[val(𝒜)] = E

[︀∑︀
𝑣∈𝑉 ∪𝑊 𝑦𝑣

]︀
≥ 𝜌 OPTLP by (6.14) and

(6.15).



154 6. Online hypergraph matching

To show this inequality, let ℎ ∈ 𝐻 be an arbitrary hyperedge incident to some
online node 𝑤 ∈𝑊 . We now consider the following probabilistic event upon the
arrival of 𝑤:

ℰ :=
{︁
∃𝑣 ∈ ℎ ∖ {𝑤} which is already matched at the arrival of 𝑤

}︁
.

We will show (6.15) by conditioning on ℰ and on its complementary event ℰ̄ , which
states that all nodes in ℎ∖{𝑤} are unmatched when𝑤 arrives, and that the hyperedge
ℎ is thus available and considered in the random choice of the algorithm in this step.
In the first case, if ℰ happens, then some offline node 𝑢 ∈ ℎ∖{𝑤} has already had its
dual value set to 𝑦𝑢 = min

(︁
1

𝑘−1 ,
𝑑

(𝑑−1)𝑘+1

)︁
= 𝜌 in a previous step of the algorithm,

leading to

E

[︃∑︁
𝑣∈ℎ

𝑦𝑣

⃒⃒⃒
ℰ

]︃
=
∑︁
𝑣∈ℎ

E [𝑦𝑣 | ℰ ] ≥ E
[︀
𝑦𝑢 | ℰ

]︀
= 𝜌.

Otherwise, if ℰ̄ happens, we know that with probability at least 1/𝑑, the algorithm
adds ℎ to the matching. Summing the dual values of the offline nodes contained in
ℎ gives ∑︁

𝑣∈ℎ∖{𝑤}

E
[︀
𝑦𝑣 | ℰ̄

]︀
≥ 1

𝑑
· (𝑘 − 1) ·min

(︂
1

𝑘 − 1
,

𝑑

(𝑑− 1)𝑘 + 1

)︂
.

Furthermore, since the algorithm will always match 𝑤 to a hyperedge in this case,
we have:

E
[︀
𝑦𝑤 | ℰ̄

]︀
= max

(︂
0,

𝑑− 𝑘 + 1

(𝑑− 1)𝑘 + 1

)︂
.

Adding those terms together, we get:∑︁
𝑣∈ℎ

E
[︀
𝑦𝑣 | ℰ̄

]︀
≥ 1

𝑑
· (𝑘 − 1) ·min

(︂
1

𝑘 − 1
,

𝑑

(𝑑− 1)𝑘 + 1

)︂
+max

(︂
0,

𝑑− 𝑘 + 1

(𝑑− 1)𝑘 + 1

)︂
= min

(︂
1

𝑑
,

𝑘 − 1

(𝑑− 1)𝑘 + 1

)︂
+max

(︂
0,

𝑑− (𝑘 − 1)

(𝑑− 1)𝑘 + 1

)︂
≥ min

(︂
1

𝑑
,

𝑘 − 1

(𝑑− 1)𝑘 + 1
+

𝑑− (𝑘 − 1)

(𝑑− 1)𝑘 + 1

)︂
≥ 𝜌.

This shows that (6.15) holds, and hence proves that the algorithm is 𝜌-competitive.
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6.6 Conclusion

We have studied the online matching problem on 𝑘-uniform hypergraphs. For the
case 𝑘 = 3, we have shown that the best competitive ratio for the fractional version of
the problem is 𝑒−1

𝑒+1 ≈ 0.4621. This provides an upper bound on the competitive ratio
of any online algorithm for the integral version of the problem as well. However, on
the lower bound side, we do not know of any (randomized) algorithm that performs
better than the greedy algorithm, which is 1

3 -competitive.
A natural strategy for finding such an algorithm would be to round the (𝑒 −

1)/(𝑒+1)-competitive algorithm. However, already in the case of bipartite matching,
it was [BSW23] shown that not every fractional matching can be losslessly rounded
to an integral matching. In the case of hypergraphs, the situation is more complicated,
as even for the offline version of the problem, there is a non-zero integrality gap.
The multiplicative integrality gap of 3-uniform matching is 2 [CL12]. As (𝑒 −
1)/(𝑒+ 1)/2 ≈ 0.231 is less than 1/3, even rounding the online fractional solution
afterwards in an offline way might not be enough to get a better competitive ratio.

Another natural strategy would be to try to adapt algorithms for the online
bipartite matching problem, such as the ranking algorithm, to the online hypergraph
matching problem. Here, the main difficulty is that such algorithms can induce a
strong correlation between the nodes that are matched in the hypergraph setting,
which makes them hard to analyze.

6.A Integral upper bound for 𝑘-uniform hypergraphs

In this section, we prove a strong upper bound against any randomized integral
algorithm, showing that the greedy algorithm is almost optimal, since it achieves a
competitive ratio of 1/𝑘.

Theorem 6.A.1. For the online matching problem on 𝑘-uniform hypergraphs, every
integral randomized algorithm is at most 2/𝑘-competitive.

Proof. We in fact prove a stronger statement and show that any randomized integral
algorithm is at most (2 − 2−𝑘+1)/𝑘-competitive. To do so, we make use of Yao’s
principle [Yao77]: it suffices to construct a randomized instance for which any
deterministic integral algorithm is at most (2−2−𝑘+1)/𝑘-competitive in expectation.
Let us now describe our randomized constructionℋ = (𝑉,𝑊,𝐻) for any 𝑘 ∈ N.

• The offline nodes are partitioned into 𝑘 − 1 blocks: 𝑉 = 𝐶1 ∪ · · · ∪ 𝐶𝑘−1,
where |𝐶𝑖| = 2(𝑘 − 𝑖) for each 𝑖 ∈ {1, . . . , 𝑘 − 1}. So, |𝑉 | = 𝑘 (𝑘 − 1) holds.
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• The instance consists of 𝑘 iterations, with online nodes 𝑤1, . . . , 𝑤𝑘 arriving.
For every 𝑖 ∈ {1, . . . , 𝑘− 1}, 𝑤𝑖 is incident to 2 hyperedges. They are disjoint
on the offline nodes 𝑉 , each containing (𝑘−𝑖) nodes from𝐶𝑖, and 1 node from
𝐶𝑗 for all 𝑗 ∈ {1, . . . , 𝑖 − 1}. On the other hand, the last online node 𝑤𝑘 is
incident to only 1 hyperedge. It contains 1 node from𝐶𝑗 for all 𝑗 ∈ {1, . . . , 𝑘−
1}.

• The offline perfect matching 𝐻* ⊆ 𝐻 is chosen randomly as follows. When
𝑤𝑖 arrives for 𝑖 ≤ 𝑘−1, select one of its two incident hyperedges uniformly at
random and add it to𝐻*. For the last online node𝑤𝑘 , its unique incident hyper-
edge is included in 𝐻*. For 𝑖 ∈ {1, . . . , 𝑘}, denote 𝐻*

𝑖 := 𝐻* ∩ (∪𝑖𝑗=1𝛿(𝑤𝑗)).
Observe that for 𝐻* to be a matching, the hyperedge(s) in 𝛿(𝑤𝑖+1) must be
disjoint from 𝐻*

𝑖 for all 𝑖 ≤ 𝑘 − 1.

Let 𝑉 (𝐻*
𝑖 ) be the offline nodes covered by 𝐻*

𝑖 . To ensure that the above
construction is possible, we will show the following invariant: for every element
𝑖 ∈ {1, . . . , 𝑘 − 1},

|𝐶𝑗 ∖ 𝑉 (𝐻*
𝑖 )| = 𝑘 − 𝑖 ∀𝑗 ∈ {1, . . . , 𝑖}. (6.16)

We prove (6.16) by induction on 𝑖. In the first iteration, both hyperedges in
𝛿(𝑤1) partition 𝐶1 because |𝐶1| = 2(𝑘 − 1). One of them is chosen to enter 𝐻*,
meaning that 𝐶1 ∖ 𝑉 (𝐻*) = 𝑘 − 1 after iteration 1. Let us now fix an iteration
𝑖 ≤ 𝑘 − 1 and suppose that (6.16) holds for all previous iterations. By construction,
𝐶𝑖 is completely covered by the two hyperedges arriving in iteration 𝑖, since each
of them contains 𝑘 − 𝑖 nodes from 𝐶𝑖 and |𝐶𝑖| = 2(𝑘 − 𝑖). One of them enters
𝐻* at the end of iteration 𝑖, meaning that |𝐶𝑖 ∖ 𝑉 (𝐻*)| = 𝑘 − 𝑖 indeed holds. For
any other 𝐶𝑗 with 𝑗 < 𝑖, note that |𝐶𝑗 ∖ 𝑉 (𝐻*)| = 𝑘 − 𝑖 + 1 at the beginning
of iteration 𝑖 by the induction hypothesis. Both hyperedges in 𝛿(𝑤𝑖) intersect 𝐶𝑗

at two different nodes, one of which enters 𝑉 (𝐻*) by the random choice. Hence,
|𝐶𝑗 ∖ 𝑉 (𝐻*)| drops by 1 and equals 𝑘 − 𝑖, proving (6.16).

Clearly, OPT(ℋ) = |𝐻*| = 𝑘. We now upper bound the value that any
deterministic algorithm can get on this randomized instance. The key observation
is that, if the algorithm picks a hyperedge ℎ ∈ 𝛿(𝑤𝑖) which is not placed in 𝐻* for
some iteration 𝑖 ∈ {1, . . . , 𝑘 − 1}, then it cannot pick any hyperedge arriving in
later iterations. This holds, since in that case, 𝐶𝑖 ∖ 𝑉 (𝐻*) ⊆ ℎ, and any hyperedge
arriving in later iterations necessarily intersects 𝐶𝑖 ∖ 𝑉 (𝐻*) by construction.

Let us denote by val𝑖 the maximum expected value achievable by a deterministic
algorithm if it can only select hyperedges from iteration 𝑖 to iteration 𝑘. Clearly,
val𝑘 = 1. In an iteration 𝑖 ∈ {1, . . . , 𝑘 − 1}, the algorithm either does nothing, or
picks a hyperedge and risks not being able to pick anything later with probability
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1/2. We thus get the following recurrence relation:

val𝑖 = max
{︁
val𝑖+1,

1

2
+

1

2
(1 + val𝑖+1)

}︁
= max

{︁
val𝑖+1, 1 +

1

2
val𝑖+1

}︁
.

The first term is at most the second term if and only if val𝑖+1 ≤ 2. Thus, the
solution to this recurrence is the geometric series val𝑖 =

∑︀𝑘−𝑖
𝑗=0 2

−𝑗 and thus val1 =∑︀𝑘−1
𝑗=0 2

−𝑗 = 2 − 2−𝑘+1. We have therefore just shown that any algorithm is at
most (2− 2−𝑘+1)/𝑘 competitive.

6.B Rounding algorithm for online hypergraph 𝑏-matching

In this section, we will consider the online hypergraph 𝑏-matching problem on
𝑘-uniform hypergraphs, in which every (offline and online) node 𝑣 can be matched
to at most 𝑏 hyperedges. We show that, for 𝑏 = Ω(log 𝑘), any fractional algorithm
can be rounded to a randomized integral algorithm while incurring a small loss in
the competitive ratio.

Let 𝒜 be a fractional algorithm that is 𝜌-competitive and letℋ = (𝑉,𝑊,𝐻) be
an online 𝑘-uniform hypergraph instance. We denote by 𝑥 ∈ [0, 1]𝐻 the fractional
solution constructed by 𝒜 on the instanceℋ. The rounding algorithm is now quite
simple and is similar to the methods used in [EJ12; RT87; SS95].

Fix some small 0 < 𝜀 < 1
2 and initialize two empty sets of hyperedges 𝑆,ℳ← ∅.

Upon the arrival of an online vertex 𝑤 ∈ 𝑊 with 𝛿(𝑤) ⊆ 𝐻 and 𝑥ℎ ∈ [0, 1] for
every ℎ ∈ 𝛿(𝑤), the rounding algorithm is as follows:

• For all ℎ ∈ 𝛿(𝑤), independently add ℎ to 𝑆 with probability 𝑥′ℎ := (1− 𝜀)𝑥ℎ.

• If ℎ was added to 𝑆, add it toℳ as long as it does not violate the degree
constraints.

The solution outputted isℳ⊆ 𝐻 . Let us denote this rounding algorithm by𝑅(𝒜, 𝜀).

Lemma 6.B.1. Let𝒜 be a fractional algorithm which is 𝜌-competitive. The randomized
integral algorithm 𝑅(𝒜, 𝜀) then achieves a competitive ratio of at least (1− 𝜀)(1−
𝑘 exp(−𝜀2𝑏/3)) · 𝜌.

Proof. Consider an arbitrary node 𝑣 ∈ 𝑉 ∪𝑊 . To bound the probability that 𝑣 is
matched to more than 𝑏 hyperedges in 𝑆, we use a Chernoff bound [Doe11, Corollary
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1.10]. Fix a node 𝑣 and a hyperedge ℎ, and let 𝑋𝑣,ℎ =
∑︀

ℎ′∈𝛿(𝑣)∖{ℎ} 1{ℎ′∈𝑆}. Note
that 𝜇 := E[𝑋𝑣,ℎ] ≤ (1− 𝜀)𝑏. We now have:

Pr [𝑋𝑣,ℎ ≥ 𝑏] ≤ exp

(︃
−
(︂
𝑏− 𝜇
𝜇

)︂2

𝜇/3

)︃
≤ exp(−𝜀2𝑏2/3𝜇) ≤ exp(−𝜀2𝑏/3),

where the second inequality follows from 𝑏− 𝜇 ≥ 𝜀𝑏 and the last inequality from
𝑏/𝜇 ≥ 1. We now upper bound the probability that a hyperedge ℎ cannot be included
inℳ because of the degree constraints:

Pr[ℎ ∈ 𝑆 ∖ℳ | ℎ ∈ 𝑆] ≤
∑︁
𝑣∈ℎ

Pr [𝑋𝑣,ℎ ≥ 𝑏] ≤ 𝑘 exp(−𝜀2𝑏/3).

Hence, we have:

E[|ℳ|] =
∑︁
ℎ∈𝐻

Pr[ℎ ∈ℳ] ≥
∑︁
ℎ∈𝐻

Pr[ℎ ∈ 𝑆] (1− Pr[ℎ ∈ 𝑆 ∖ℳ])

≥
∑︁
ℎ∈𝐻

𝑥′ℎ
(︀
1− 𝑘 exp(𝜀2𝑏/3)

)︀
≥
(︀
1− 𝑘 exp(𝜀2𝑏/3)

)︀
(1− 𝜀)

∑︁
ℎ∈𝐻

𝑥ℎ

≥
(︀
1− 𝑘 exp(𝜀2𝑏/3)

)︀
(1− 𝜀)𝜌OPTLP.

If 𝑏 = 𝐶 · log(𝑘) for some 𝐶 ≥ 1, then by choosing 𝜀 =
√︀
3 log(𝐶)/𝐶 we get

that the competitive ratio is at least (1−
√︀
3 log(𝐶)/𝐶)(1− 1/𝐶)𝜌. By using the

Ω(1/ log 𝑘)-competitive fractional algorithm from [BN09], this gives an Ω(1/ log 𝑘)-
competitive integral algorithm for this setting.



Chapter 7

Propagation and dual proof analysis in an exact MIP
solver

In this chapter we approach the branch-and-bound algorithm from a practical point
of view. We consider the use case of solving MIPs exactly, and show how to adapt
the techniques of constraint propagation and dual proof analysis to the exact setting.
Using an experimental analysis, we show that enabling these techniques can lead to
significant performance improvements in the context of exact MIP-solving.

7.1 Introduction

A wide variety of solvers is available for solving mixed integer programs. These
solvers generally use the branch-and-bound algorithm at their core, but employ
many complementary techniques to improve their performance [NW88; Ach07b;
CCZ14; Ach+19; HP19]. They typically use double precision floating-point arithmetic
together with the careful handling of numerical tolerances to quickly compute
accurate solutions. While this approach makes the solving process highly efficient,
and is accurate enough in practice for most applications, there exist problems where
exact solutions are necessary. This is the case for applications in computational
mathematics [BMVV19; BO12; EGP22; KS18; LPR20; Pul20] as well as for several
industry applications where exact correctness is critical [Ach07b; WLH00; SBD19].
Furthermore, there exist pathological instances that exhibit such numerical difficul-
ties that floating-point solvers produce large errors. For these reasons, there is a
need for roundoff-error-free MIP solvers.

In recent years, a hybrid approach has been proposed that aims to take advantage
of both floating-point and exact arithmetic in order to solve MIPs exactly [CKSW13].
This approach has been revised and further improved by [EG22], and more recently
in [EG23] with the addition of cutting planes. What can be clearly seen in these
works is that for numerical techniques to be beneficial, it is crucial to employ them

The contents of this chapter are based on joint work with Leon Eifler and Ambros Gleixner
[BEG24].

159



160 7. Propagation and dual proof analysis in an exact MIP solver

as much as possible using floating-point arithmetic in a numerically safe way, as
symbolic computation can be prohibitively slow.

An important feature of MIP solvers is constraint propagation, which is a
technique that uses the problem constraints to tighten variable bounds, which
can be used to detect infeasibility of a subproblem before the LP is solved. This saves
time, as performing constraint propagation is generally much faster than solving an
LP.

Another key feature of MIP solvers that has not yet been adapted to the exact
setting is conflict analysis, which can be categorized in two distinct types. In
this chapter we will study dual proof analysis, which was introduced by [WBH17;
WBH21]. This type of conflict analysis derives constraints from Farkas certificates
of infeasible subproblems and dual solutions of bound-exceeding LPs. These are
redundant constraints that do not strengthen the LP relaxation. However, by
performing propagation on these constraints, infeasibility of subsequent subproblems
can be detected more efficiently. Another form of conflict analysis is graph-based
conflict analysis [Ach07a], which was inspired by a similar procedure in SAT solving
[BS97; MS99; Mos+01]. This form of conflict analysis is numerically simpler, as it
only generates disjunctive constraints with ±1 coefficients. In this chapter we study
dual proof analysis, since our focus is on adapting numerical methods and studying
the challenges that arise in the exact setting.

An important aspect in the context of roundoff-error-free algorithms is the
certification of their correctness. A certifying algorithm creates a certificate alongside
its solution that can be independently verified to be correct [MMNS11; Alk+11].
Such techniques have become standard in SAT solving [WHJ14; Cru+17; CMS17;
GN03], and have also been adapted to SMT solving [dMB08; Bar+22], pseudo boolean
optimization [Goc19; EGMN20], as well as to MIP solving [CGS17; EG22; EG23].

To summarize, our contribution is to develop numerically safe versions constraint
propagation and dual proof analysis, and to show that they can be used to improve
the performance of an exact MIP solver in practice. Furthermore, we show how to
certify the correctness of the derived bounds in the VIPR [CGS17] certificate format.

Organization

First, we introduce the existing methods of dual proof analysis and propagation in
Section 7.2. Then, we describe how to adapt these techniques to the exact setting
as well as how to certify their correctness in Section 7.3. We conduct a thorough
computational study in Section 7.4, showing that these techniques can be used to
improve the running time by 23% on the MIPLIB 2017 benchmark test set [Gle+21]
and solve more instances within a time limit of two hours. We conclude with an
outlook on future research in Section 7.5.
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7.2 Constraint propagation and conflict analysis

In this chapter we consider MIPs of the form

minimize 𝑐T𝑥

subject to 𝐴𝑥 ≥ 𝑏,
ℓ𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 for all 𝑖 ∈ [𝑛],

𝑥𝑖 ∈ Z for all 𝑖 ∈ 𝑆,

for 𝐴 ∈ R𝑚×𝑛, 𝑐 ∈ R𝑛, 𝑏 ∈ R𝑚. For the sake of simplicity of presentation, we
assume that all variables have finite bounds. The techniques are still applicable to
MIPs with infinite bounds, but propagation of some constraints involving unbounded
variables may become ineffective and is skipped. In the following, we first review the
techniques of constraint propagation and dual proof analysis in the floating-point
setting.

Constraint propagation

Constraint propagation is a technique that uses the problem constraints to tighten
variable bounds, see, e.g. [Ach07b, p. 426]. Consider a constraint 𝑎T𝑥 ≥ 𝑏. The
maximum activity is defined as act+ :=

∑︀𝑛
𝑖=1 max(𝑎𝑖ℓ𝑖, 𝑎𝑖𝑢𝑖). Similarly, the

minimum activity is defined to be act− :=
∑︀𝑛

𝑖=1 min(𝑎𝑖ℓ𝑖, 𝑎𝑖𝑢𝑖). We define the
maximum activity relative to variable 𝑥𝑘 as

act+𝑘 :=
∑︁

𝑖∈[𝑛]∖{𝑘}

max(𝑎𝑖ℓ𝑖, 𝑎𝑖𝑢𝑖),

and the minimum activity act−𝑘 analogously.
Any feasible vector 𝑥 will satisfy 𝑎T𝑥 ≤ act+. Hence, for any variable 𝑥𝑖 with

𝑎𝑘 > 0, we have

𝑥𝑘 ≥
𝑏− act+𝑘
𝑎𝑘

, (7.1)

and if 𝑎𝑘 < 0 we have

𝑥𝑘 ≤
𝑏− act+𝑘
𝑎𝑘

. (7.2)

Constraint propagation is the technique of computing the appropriate bounds
from Eqs. (7.1) and (7.2) and using them to tighten one of the variable bounds ℓ𝑘, 𝑢𝑘
if possible. It can be performed in an iterated fashion, as long as some of the bounds
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have been tightened. This is also the case at every node in a branch-and-bound tree,
where the local bounds of the subproblem are taken into account after they have
been tightened by branching decisions.

In addition, by computing the minimum activity of a constraint, it can sometimes
be determined that a subproblem is infeasible. This happens when act− < 𝑏. In this
case, the problem is infeasible because the constraint is violated by any solution that
respects the variable bounds. Conversely, whenever act+ ≥ 𝑏, then constraint is
redundant and can be safely removed for the corresponding subproblem.

Dual proof analysis

Dual proof analysis is a technique that allows to learn from previously solved
subproblems that are infeasible or exceed the objective bound. In this type of
conflict analysis, for any subproblem with an infeasible or bound-exceeding LP
relaxation a constraint is added to the global problem from which the infeasibility
of the subproblem can be derived by applying constraint propagation to this single
constraint instead of solving the LP relaxation over all constraints. Note that the
constraint will be redundant, and therefore does not need to be added to the LP.
However, it can be used for constraint propagation in other nodes of the tree.

If branching is only performed on variables, then such a subproblem is given
as a sequence of bounds ℓ′𝑖, 𝑢′𝑖 that have to be satisfied in addition to the problem
constraints. So, the LP relaxation in any node in the tree will be of the form

min 𝑐T𝑥
𝐴𝑥 ≥ 𝑏

ℓ′𝑖 ≤ 𝑥𝑖 ≤ 𝑢′𝑖 for all 𝑖 ∈ [𝑛].

The dual program to this LP is given by

max 𝑏T𝑦 + ℓ′T𝑟+ − 𝑢′T𝑟−

𝑟+ − 𝑟− −𝐴T𝑦 = −𝑐
𝑦 ≥ 0, 𝑟+ ≥ 0, 𝑟− ≥ 0.

If ℓ′ ≤ 𝑢′, we can assume that for all 𝑖 ∈ [𝑛] either 𝑟+𝑖 or 𝑟−𝑖 is zero, so we will
write 𝑟 = 𝑟+ − 𝑟−. If the subproblem is infeasible, then the dual program will be
unbounded. This implies that there must exist a ray 𝑦, 𝑟+, 𝑟− with

𝑏T𝑦 + ℓ′T𝑟+ − 𝑢′T𝑟− > 0,

𝐴T𝑦 + 𝑟 = 0.
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Such a ray is called a Farkas proof of infeasibility [Far02]. Rewriting this gives

0 < 𝑏T𝑦 + ℓ′T𝑟+ − 𝑢′T𝑟− = 𝑏T𝑦 − ℓ′T(𝐴T𝑦)− + 𝑢′T(𝐴T𝑦)+. (7.3)

In dual proof analysis, the MIP solver adds the constraint 𝑦T𝐴𝑥 ≤ 𝑦T𝑏 to the
problem. Note that this constraint is globally valid, since it is a linear combination
of problem constraints. The minimum activity of this constraint in the current
subproblem is act− = ℓ′T(𝐴T𝑦)+−𝑢′T(𝐴T𝑦)−. Substituting this into Eq. (7.3) shows
that act− > 𝑏T𝑦. Hence, for this subproblem, infeasibility can immediately be
derived using propagation of the newly added constraint.

Now consider the case of a bound-exceeding subproblem. This occurs when
the objective value to the LP relaxation of the current problem is higher than the
objective value 𝑐T𝑥∙ of the best IP-solution 𝑥∙ found so far. We can cut off bound-
exceeding subproblems by imposing 𝑐T𝑥 ≤ 𝑐T𝑥∙. Let 𝑦 be the optimal dual solution.
Dual proof analysis adds the constraint (𝑦T𝐴− 𝑐)T𝑥 ≥ 𝑦T𝑏− 𝑐T𝑥∙. This constraint
is valid, as it is a linear combination of the constraints of 𝐴 and 𝑐T𝑥 ≤ 𝑐T𝑥∙. Note
that for any feasible 𝑥 for the subproblem, we have

𝑏T𝑦 + ℓ′T(𝐴T𝑦 − 𝑐)+ − 𝑢′T(𝐴T𝑦 − 𝑐)− = 𝑏T𝑦 + ℓ′T𝑟+ − 𝑢′T𝑟− ≥ 𝑐T𝑥∙, (7.4)

that is

ℓ′T(𝐴T𝑦 − 𝑐)+ − 𝑢′T(𝐴T𝑦 − 𝑐)− ≥ 𝑐T𝑥∙ − 𝑏T𝑦. (7.5)

Note that the left hand is the minimum activity of the newly added conflict constraint.
So just like in the case of an infeasible subproblem, we see that the bound-exceeding
subproblem can now be cut of using constraint propagation on the newly added
constraint.

The constraints will not be added to the LP, but are only used for propagation.
Since dual proof analysis might be applied many times it can get too expensive to
store all the derived constraints. Therefore, we employ a method called aging, to
dynamically remove constraints that have not been useful for a long time [WBH17].
In the exact setting, we make use of the same method.

7.3 Application in numerically exact MIP solving

To efficiently implement constraint propagation and dual proof analysis in an exact
MIP solver, we will perform most computations in floating-point arithmetic. To
guarantee correctness, we carefully make use of directed rounding. We start with
some definitions.
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Let F ⊆ Q denote the set of floating-point numbers. In practice, these will be
standard IEEE double-precision [IEE08] numbers with 11 bits for the exponent and
52 bits for the mantissa. For all 𝑥 ∈ Q, we define:

𝑥 = min{𝑦 ∈ F : 𝑦 ≥ 𝑥} 𝑥 = max{𝑦 ∈ F : 𝑦 ≤ 𝑥}.

We will write 𝑎+ 𝑏+ 𝑐+ · · · for 𝑎+ 𝑏+ · · ·. An expression 𝑎+ 𝑏+ · · · is defined
analogously, as well as multiplication, division, and any combination thereof. We
note that this is consistent with how these expressions are computed in practice.

Numerically safe constraint propagation

Constraint propagation is applied at every node in the branch-and-bound tree.
Recomputing the minimum and maximum activity each time would be costly.
Therefore, a solver will keep track of these activities and update them whenever
they change. This happens when the variable bounds change, i.e., when the bounds
(ℓ, 𝑢) of variable 𝑥𝑖 become (ℓ′, 𝑢′), we update the maximum activity as

act+ ←

{︃
(𝑢′ − 𝑢)𝑎𝑖 if 𝑎𝑖 ≥ 0,

(ℓ′ − ℓ)𝑎𝑖 otherwise.
.

In the exact setting, the activities would ideally be computed in exact arithmetic,
to give the tightest possible bounds. However, updating the activities using symbolic
computations can be prohibitively expensive. So instead our implementation uses
floating-point arithmetic. To ensure that no incorrect bounds are derived, we enforce
the maximum activity that we maintain to be at least as large as the actual maximum
activity. So when bounds (ℓ, 𝑢) are updated to (ℓ′, 𝑢′), the maximum activity is
updated to

act+ ←

{︃
act+ + 𝑢′𝑎𝑖 − 𝑢𝑎𝑖 if 𝑎𝑖 ≥ 0,

act+ + ℓ′𝑎𝑖 − ℓ𝑎𝑖 otherwise,

using directed rounding. Similarly, for the minimum activity we maintain only a
lower bound on the exact value.

In the floating-point setting the maintained activities need to be recomputed
regularly to keep the aggregated inaccuracy from accumulating. In the exact setting
this is not necessary, since the activities are guaranteed to remain valid. For this
reason we do not recompute them.
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Numerically safe dual proof analysis

As explained in Section 7.2, the dual ray 𝑦 is computed and the constraint 𝑦T𝐴𝑥 ≤ 𝑦T𝑏
is added to the problem. For the sake of efficiency, we let the MIP solver compute 𝑦
inexactly, i.e., 𝑦 is obtained by a floating-point LP solve, using the standard error
tolerances. This suffices, since slightly negative dual multipliers can be set to zero
and any conic combination of the constraints is globally valid.

To aggregate the constraints we also use floating-point arithmetic. We start from
the constraint 𝑎̂T𝑥 ≤ 𝑏̂ for 𝑎̂ = 0 and 𝑏̂ = 0, which holds trivially. Now we add the
constraints 𝑦𝑗𝐴T

·𝑗𝑥 ≤ 𝑦𝑗𝑏𝑗 (where 𝐴·𝑗 is the 𝑗th column of 𝐴) to this constraint one

by one: For each 𝑗, we set 𝑏̂← 𝑏̂+ 𝑦𝑗𝑏𝑗 and the components of 𝑎̂ are updated in the
following way:

• If 𝑢𝑖 ≤ 0, then we set 𝑎̂𝑖 ← 𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖.

• Otherwise, if ℓ𝑖 ≥ 0, then we round 𝑎̂𝑖 ← 𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖.

• Otherwise, if 𝑢𝑖 ≤ ∞, then we set 𝑏̂ ← 𝑏̂+ (𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖 − (𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖))𝑢𝑖

and set 𝑎̂𝑖 ← 𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖.

• Otherwise, if ℓ𝑖 ≥ −∞, then we set 𝑏̂ ← 𝑏̂− (𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖 − (𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖))ℓ𝑖
and set 𝑎̂𝑖 ← 𝑎̂𝑖 + 𝑦𝑗𝐴𝑗𝑖.

Note that this way of rounding guarantees that the constraint stays valid, and
yields an approximation of the exact conflict constraint. This approach has been
used before to implement Gomory mixed integer cuts [EG23].

Producing certificates of correctness

MIP solvers are complex pieces of software, that might contain bugs. Hence, it can
be desirable to verify the correctness of a solution that was found using a MIP solver,
especially when finding exact solutions is important. While checking feasibility
is easy, verifying optimality is harder, since this requires checking many nodes in
the branch-and-bound tree without using the solver. To make it possible to verify
optimality, a MIP solver can be extended to emit a certificate of optimality [CGS17].
The certificate contains all derived bounds, plus a reason for why each bound holds.
These certificates can be verified using a simple piece of software that does not make
use of the solver.

SCIP has been extended to generate certificates that can be verified using the
program VIPR [CGS17]. A VIPR certificate contains all the initial problem constraints
and any derived constraints. Each derived constraint contains a reason, that justifies
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why the constraint holds. Previously derived constraints can be referred to by their
line number in the certificate. In VIPR certificates there are two deduction rules to
derive an inequality:

• Linear combination. If a constraint is a linear combination of previously
derived constraints, it has to be valid. To certify the derivation, the line
numbers of these constraints are printed, along with the corresponding
coefficients.

• Rounding. If 𝑐T𝑥 ≤ 𝑏 has been previously derived such that 𝑐 is zero for
all indices that correspond to non-integral variables, then

∑︀
𝑖⌊𝑐𝑖⌋𝑥𝑖 must be

integral for any feasible solution 𝑥. Hence,
∑︀

𝑖⌊𝑐𝑖⌋𝑥𝑖 ≤ ⌊𝑏⌋ holds. To certify
the derivation, the line number of the constraint 𝑐T𝑥 ≤ 𝑏 is printed to the
certificate. This procedure is called a Chvátal-Gomory cut in the context of
pure integer programming.

Additionally, there are deduction rules that allow to encode a branching proof.
To be able to verify bounds that were derived using constraint propagation or

dual proof analysis, these bounds need to be written to the certificate in terms of the
above derivation rules. Because Eqs. (7.1) and (7.2) are both linear combinations of
valid variable bounds, constraint propagation steps can be added to the certificate
using the ‘linear combination’ deduction rule. If 𝑎𝑘 > 0 the constraint is

𝑥𝑘 ≥
1

𝑎𝑘

⎛⎝𝑏𝑗 − 𝑛∑︁
𝑖∈[𝑛]∖{𝑘}

max(𝑎𝑖ℓ𝑖, 𝑎𝑖𝑢𝑖)

⎞⎠ . (7.6)

For each 𝑖 ̸= 𝑘, the line number of 𝑥𝑖 ≥ ℓ𝑖 is printed to the certificate if 𝑎𝑖ℓ𝑖 >
𝑎𝑖𝑢𝑖. Otherwise, the line number of 𝑥𝑖 ≤ 𝑢𝑖 is printed. Finally, the line number
corresponding to the constraint

∑︀𝑛
𝑖=1 𝑎𝑖𝑥𝑖 ≥ 𝑏𝑗 is printed as well. For each of the

constraints, the corresponding coefficient is 1/𝑎𝑘.
If 𝑥𝑘 is an integer variable and for all 𝑖 with nonzero 𝑎𝑖, both 𝑎𝑖 and 𝑥𝑖 are

integral, a rounding derivation is printed to the certificate, certifying

𝑥𝑘 ≥
⌈︀ 1

𝑎𝑘
(𝑏𝑗 −

𝑛∑︁
𝑖∈[𝑛]∖{𝑘}

max(𝑎𝑖ℓ𝑖, 𝑎𝑖𝑢𝑖))
⌉︀
. (7.7)

In dual proof analysis, only linear combinations of globally valid constraints are
added as constraints. However, these constraints are computed using safe rounding
methods instead of exact arithmetic. For that reason, the derived constraints cannot
be computed directly using the given multipliers and the “linear compbination”
deduction rule.
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Instead, we let the solver write just the linear combination corresponding to the
original constraint to the certificate along with a list of the current bounds for all
variables appearing in the constraint. Then afterwards a post-processing tool, called
viprcomplete is applied to the certificate to repair the linear combination of all
of the constraints that have slight inaccuracies due to the safe rounding procedure.
One of the advantages of this approach is that the repair step only needs to be done
for constraints that will actually be used in the solving process. For details, we refer
to [EG23].

7.4 Computational study

To analyze the actual impact of constraint propagation and dual proof analysis in
the context of exact MIP solving, we implemented these techniques in the exact
variant of SCIP and compared them with the impact of the same techniques in the
floating-point version of SCIP. Our runtime experiments do not include the time for
certificate generation in order to be as comparable as possible with the floating-point
version. We stress that while certificate generation does incur a computational cost,
it does not change the solving path and therefore does not affect the solvability of
instances. We refer to [EG22; EG23] for a detailed discussion of the computational
cost of certificate generation.

Experimental setup and test set

The experiments were all performed on a cluster of Intel Xeon Gold 5122 CPUs
with 3.6 GHz and 96 GB main memory. For all symbolic computations, we use the
GNU Multiple Precision Library (GMP) 6.1.2 [GT15]. All compared algorithms are
implemented within SCIP 8.0.3 [Vig+23], using SoPlex 6.0.3 [Mil+22] as both the
floating-point and the exact LP solver. For presolving in exact arithmetic, we use
PaPILO 2.0.1 [Hoe22] and disable all other presolving steps. Our proposed algorithms
are freely available on GitHub.1

We use the MIPLIB 2017 benchmark test set [Gle+21]; in order to save compu-
tational effort, we exclude all those that could not be solved by the floating-point
default version of SCIP 8.0.3 within two hours. For the remaining 132 instances we
use three random seeds, making the size of our test set 396. We report aggregated
times in shifted geometric mean with a shift of 1 second, and node numbers in shifted

1As part of the development version of exact SCIP mirrored under https://github.com/
scipopt/scip/tree/exact-rational.

https://github.com/scipopt/scip/tree/exact-rational
https://github.com/scipopt/scip/tree/exact-rational
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geometric mean with a shift of 100 nodes. For all tests, a time limit of two hours is
used.

Experimental results

The experimental results can be found in Table 7.1. From the table we see that
enabling propagation leads to an improvement in the running time of 11.6%. Also, 12
more instances are solved to optimality within the time limit. The number of nodes
decreases by 13.6%. Enabling dual proof analysis decreases the running time by
another 13.4% and the node count by 17.7%. 3 more instances are solved to optimality
within the time limit. Together this comes down to a 23.4% decrease in running time,
a 28.9% decrease in node count and 15 more instances that can be solved. From the
performance profile in Fig. 7.1 it is also clear that enabling constraint propagation
and conflict analysis consistently speeds up the solver. We also measured the total
time that is spent in propagation. As can be seen from the table, this amount is small
in comparison with the total time.

To compare this with the impact that these techniques have in the floating-point
setting, we ran the same experiments on floating-point SCIP. In these experiments we
disabled the features not present in the exact version of SCIP: all cutting planes, graph-
based conflict analysis, restarts, presolving (except for PAPILO), custom propagation
rules. As shown in Table 7.2 in the floating-point setting, enabling propagation
reduces solving time by 12.7%. The node count increases by 6.2% and 11 more
instances are solved to optimality. Dual proof analysis reduces the running time
by another 36.5% and the node count by 67.1%. 20 more instances are solved to
optimality. Together this comes down to a decrease in the running time of 44.5%, a
65.1% decrease in node count and 31 more instances being solved to optimality.

It is clear that the performance boost is significantly larger in the floating-point
setting. The same is true for the increase in the number of instances solved. While
the speedup from only enabling propagation is comparable, we observe a much
greater reduction in the number of nodes, and a much larger speedup from conflict
analysis in the floating-point setting. We see several reasons contributing to this
difference.

First, performance variability plays a part and the fact that we look at different
subsets of the instances. Second, propagation takes up more time in the exact solving
mode. Although the shifted geometric mean of the propagation times shown in
Table 7.1 is not large, there exist instances where exact propagation even takes up a
major portion of the solving time. This is the case for instances in which propagation
leads to a large number of bound changes, since applying these bound changes
is computationally more expensive in the exact setting. This is because, while
the propagation procedure itself is implemented using floating-point arithmetic,



7.4. Computational study 169

# Solved Time Nodes (rel)

Settings Total (rel) CP DPA

Baseline 135 759.21 — — — 8735.1 —
+ CP 147 671.22 (0.88) 9.11 — 7550.4 (0.86)
+ CP + DPA 150 581.46 (0.77) 9.22 5.44 6211.1 (0.71)

Table 7.1: Experimental results comparing the performance of exact SCIP with and
without constraint propagation (CP) and dual proof analysis (DPA) enabled. All
times shown are in seconds. For the times and node counts, the shifted geometric
with shift 1 seconds or 100 nodes respectively is used. Columns (rel) show times and
nodes relative to the baseline. Only the instances that could be solved by at least
one of the given configurations are included in these statistics.

Settings # Solved Time (rel) Nodes (rel)

Baseline 164 584.84 — 11415.0 —
+ CP 175 510.85 (0.87) 12119.4 (1.06)
+ CP + DPA 195 324.41 (0.55) 6986.1 (0.61)

Table 7.2: Experimental results comparing the performance of floating-point SCIP
with and without constraint propagation (CP) and dual proof analysis (DPA) enabled.
All times shown are in seconds. For the times and node counts, the shifted geometric
with shift 1 seconds or 100 nodes respectively is used. Columns (rel) show times and
nodes relative to the baseline. Only the instances that could be solved by at least
one of the given configurations are included in these statistics.
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Figure 7.1: Performance profile for different configurations. For each configuration
it is shown how many instances achieved a running time within a given factor of
the shortest running time for that instances. Only the instances that could be solved
by at least one of the given configurations are included in these statistics.

applying a bound change in exact SCIP is currently done using exact arithmetic. So
every floating-point bound change needs to be converted to a rational number first,
and then that rational number needs to be used to update the exact bound. This can
slow down the process significantly. If we only look at the solving time without the
time spent in propagation, the speedup from enabling propagation is 17.1%, and the
speedup from enabling conflict analysis is 28.3%.

There are more reasons that might lead to a lower impact of dual proof analysis in
the exact setting. Themost important one is that constraint propagation is performed
using floating-point arithmetic, and that we cannot determine infeasibility within
tolerances in the exact setting. This might sometimes lead to derived bounds not
being precise enough to be useful in the exact settings or conflicts not being able
to prove infeasibility. For example, it is possible that in floating-point mode such
an inexact bound can be used to decide the infeasibility of a node, whereas in exact
mode the corresponding LP still needs to be solved. In numerically difficult cases,
this might even lead to incorrect cutoffs in the floating-point setting. It is clear that
this is a trade-off that we can never fully avoid, guaranteeing correctness while
sacrificing performance.

Another possible reason that the techniques are slightly less effective in exact
SCIP could be that the derived variable bounds on non-integral variables can have a
large denominator. This can slow down solving LPs exactly, as has been observed
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for safe cutting plane generation in [EG23]. We experimented with two variants
that try to prevent this from happening:

1. Limit the size of the denominators of the derived variable bounds for continu-
ous variables to a fixed upper bound.

2. Disable constraint propagation for continuous variables.

However, we did not observe any positive effects on the solving times. This does not
mean that the described negative effects do not occur, but rather that all in all, by
enabling propagation for non-integral variables and allowing arbitrary denominators
in their bounds, we gain more than we lose.

7.5 Conclusion

In this study, we investigated the feasibility and impact of constraint propagation
and dual proof analysis in the exact MIP solver SCIP. We found that enabling both
techniques decreases the running time by 23.4% and the number of nodes by 28.9%.
This performance boost is significant, but less than the 44.5% decrease in running
time and 65.1% decrease in node count that we observed in the equivalent floating-
point setting. Such weaker performance is partially the price to be paid for exactness,
coming from weaker inequalities due to directed rounding and the fact that we
cannot determine infeasibility within tolerances in the exact setting.

Still, we see several future research opportunities to further improve these results.
On the implementation side, we believe there is potential to decrease the time spent
in propagation by adding support for floating-point bound changes in exact SCIP.
Also, due to technical reasons, it is currently not possible to apply propagation within
strong branching in the exact solving mode. Enabling this could also be beneficial.

Algorithmically, incorporating the strengthening techniques from [WBH21] for
conflict constraints also in the exact setting is likely to yield additional performance
improvements. Finally, implementing graph-based conflict analysis [Ach07a] would
be straightforward due to its combinatorial nature and is sure to yield positive impact
in the exact setting. More open-ended is the question if sporadically recomputing
the activities also in the exact setting could lead to tighter bounds and thus better
performance.
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Samenvatting

Optimalisatieproblemen zijn overal: van het maken van lesroosters tot het ontwerpen
van computerchips. Veel van deze problemen kunnen worden geformuleerd als een
integer linear program (ILP), een universeel optimalisatieprobleem. Hierdoor kunnen
ze worden opgelost met een generiek computerprogramma genaamd MIP solver. Er
bestaan vele MIP solvers, die vrijwel allemaal gebaseerd zijn op hetzelfde algoritme:
het branch-and-bound algoritme.

In dit proefschrift onderzoeken we verschillende aspecten van dit algoritme.
Allereerst onderzoeken we in Hoofdstuk 3 de oplossingstijd die het algoritme nodig
heeft om willekeurig gegenereerde ILP’s op te lossen. We laten zien dat voor diverse
klassen van willekeurige ILP’s, de verwachte oplossingstijd enkel polynomiaal
afhangt van het aantal variabelen in het ILP, terwijl de oplossingstijd in het slechtste
geval exponentieel is. Dit resultaat is gebaseerd op nieuwe bovengrenzen voor de
integrality gap van deze ILPs. Om deze bovengrenzen te bewijzen, introduceren we
nieuwe theorie over de discrepancy van willekeurige matrices.

Een belangrijk aspect van het branch-and-bound algoritme is de zogenaamde
zoekstrategie, die bepaalt in welke volgorde deelproblemen worden opgelost. De
moeilijkheid van het ontwerpen van een goede zoekstrategie is dat een zoekrichting
moet worden gekozen zonder kennis van de volledige branch-and-bound boom.
In Hoofdstuk 5 analyseren we zoekstrategiën op een theoretische manier, in het
explorable heap model. We introduceren een nieuwe zoekstrategie, en bewijzen dat
deze strategie in dit model beter presteert dan bestaande zoekstrategiën.

In Hoofdstuk 6 bestuderen we een ander probleem dat draait om het maken
van keuzes op basis van onvolledige informatie: het online matching probleem voor
𝑘-uniforme hypergrafen. Één voor één arriveren de online knopen samen met hun
incidente hyperkanten, en het algoritme moet direct beslissen welke hyperkant toe
te voegen aan de matching. We richten ons op het geval 𝑘 = 3 en laten zien dat het
optimale competitieve ratio van een online algoritme voor de fractionele versie van
dit probleem gelijk is aan 𝑒−1

𝑒+1 ≈ 0.4621. Verder presenteren we een algoritme voor
de geheeltallige versie van het probleem dat op hypergrafen met begrensde graad
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een competitieve ratio strikt beter dan 1
𝑘 bereikt.

ILP’s worden in het algemeen opgelost met behulp van floating-point getallen,
aangezien dit in de praktijk veel sneller is dan het werken met exacte breuken. Dit
kan echter leiden tot numerieke problemen, zoals afrondingsfouten. In Hoofdstuk 7
onderzoeken we het oplossen van ILP’s met behulp van exacte breuken. We maken
hierbij gebruik van de exacte MIP solver SCIP. De exacte versie van deze solver heeft
geen ondersteuning voor constraint propagation en conflictanalyse, twee technieken
die het oplossen van ILP’s erg kunnen versnellen. We laten zien dat het mogelijk
is om deze technieken te implementeren in de exacte solver, en dat dit leidt tot een
significante verbetering van de oplossingstijd.
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